xref: /openbmc/linux/arch/mips/kernel/smp.c (revision cb3908c133f1285069673f11ad651d14ae0406cf)
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/export.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched/mm.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 #include <linux/irqdomain.h>
37 #include <linux/of.h>
38 #include <linux/of_irq.h>
39 
40 #include <linux/atomic.h>
41 #include <asm/cpu.h>
42 #include <asm/ginvt.h>
43 #include <asm/processor.h>
44 #include <asm/idle.h>
45 #include <asm/r4k-timer.h>
46 #include <asm/mips-cps.h>
47 #include <asm/mmu_context.h>
48 #include <asm/time.h>
49 #include <asm/setup.h>
50 #include <asm/maar.h>
51 
52 int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP];   /* Map physical to logical */
53 EXPORT_SYMBOL(__cpu_number_map);
54 
55 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
56 EXPORT_SYMBOL(__cpu_logical_map);
57 
58 /* Number of TCs (or siblings in Intel speak) per CPU core */
59 int smp_num_siblings = 1;
60 EXPORT_SYMBOL(smp_num_siblings);
61 
62 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
63 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
64 EXPORT_SYMBOL(cpu_sibling_map);
65 
66 /* representing the core map of multi-core chips of each logical CPU */
67 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
68 EXPORT_SYMBOL(cpu_core_map);
69 
70 static DECLARE_COMPLETION(cpu_starting);
71 static DECLARE_COMPLETION(cpu_running);
72 
73 /*
74  * A logcal cpu mask containing only one VPE per core to
75  * reduce the number of IPIs on large MT systems.
76  */
77 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
78 EXPORT_SYMBOL(cpu_foreign_map);
79 
80 /* representing cpus for which sibling maps can be computed */
81 static cpumask_t cpu_sibling_setup_map;
82 
83 /* representing cpus for which core maps can be computed */
84 static cpumask_t cpu_core_setup_map;
85 
86 cpumask_t cpu_coherent_mask;
87 
88 #ifdef CONFIG_GENERIC_IRQ_IPI
89 static struct irq_desc *call_desc;
90 static struct irq_desc *sched_desc;
91 #endif
92 
93 static inline void set_cpu_sibling_map(int cpu)
94 {
95 	int i;
96 
97 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
98 
99 	if (smp_num_siblings > 1) {
100 		for_each_cpu(i, &cpu_sibling_setup_map) {
101 			if (cpus_are_siblings(cpu, i)) {
102 				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
103 				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
104 			}
105 		}
106 	} else
107 		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
108 }
109 
110 static inline void set_cpu_core_map(int cpu)
111 {
112 	int i;
113 
114 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
115 
116 	for_each_cpu(i, &cpu_core_setup_map) {
117 		if (cpu_data[cpu].package == cpu_data[i].package) {
118 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
119 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
120 		}
121 	}
122 }
123 
124 /*
125  * Calculate a new cpu_foreign_map mask whenever a
126  * new cpu appears or disappears.
127  */
128 void calculate_cpu_foreign_map(void)
129 {
130 	int i, k, core_present;
131 	cpumask_t temp_foreign_map;
132 
133 	/* Re-calculate the mask */
134 	cpumask_clear(&temp_foreign_map);
135 	for_each_online_cpu(i) {
136 		core_present = 0;
137 		for_each_cpu(k, &temp_foreign_map)
138 			if (cpus_are_siblings(i, k))
139 				core_present = 1;
140 		if (!core_present)
141 			cpumask_set_cpu(i, &temp_foreign_map);
142 	}
143 
144 	for_each_online_cpu(i)
145 		cpumask_andnot(&cpu_foreign_map[i],
146 			       &temp_foreign_map, &cpu_sibling_map[i]);
147 }
148 
149 const struct plat_smp_ops *mp_ops;
150 EXPORT_SYMBOL(mp_ops);
151 
152 void register_smp_ops(const struct plat_smp_ops *ops)
153 {
154 	if (mp_ops)
155 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
156 
157 	mp_ops = ops;
158 }
159 
160 #ifdef CONFIG_GENERIC_IRQ_IPI
161 void mips_smp_send_ipi_single(int cpu, unsigned int action)
162 {
163 	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
164 }
165 
166 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
167 {
168 	unsigned long flags;
169 	unsigned int core;
170 	int cpu;
171 
172 	local_irq_save(flags);
173 
174 	switch (action) {
175 	case SMP_CALL_FUNCTION:
176 		__ipi_send_mask(call_desc, mask);
177 		break;
178 
179 	case SMP_RESCHEDULE_YOURSELF:
180 		__ipi_send_mask(sched_desc, mask);
181 		break;
182 
183 	default:
184 		BUG();
185 	}
186 
187 	if (mips_cpc_present()) {
188 		for_each_cpu(cpu, mask) {
189 			if (cpus_are_siblings(cpu, smp_processor_id()))
190 				continue;
191 
192 			core = cpu_core(&cpu_data[cpu]);
193 
194 			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
195 				mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
196 				mips_cpc_lock_other(core);
197 				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
198 				mips_cpc_unlock_other();
199 				mips_cm_unlock_other();
200 			}
201 		}
202 	}
203 
204 	local_irq_restore(flags);
205 }
206 
207 
208 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
209 {
210 	scheduler_ipi();
211 
212 	return IRQ_HANDLED;
213 }
214 
215 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
216 {
217 	generic_smp_call_function_interrupt();
218 
219 	return IRQ_HANDLED;
220 }
221 
222 static struct irqaction irq_resched = {
223 	.handler	= ipi_resched_interrupt,
224 	.flags		= IRQF_PERCPU,
225 	.name		= "IPI resched"
226 };
227 
228 static struct irqaction irq_call = {
229 	.handler	= ipi_call_interrupt,
230 	.flags		= IRQF_PERCPU,
231 	.name		= "IPI call"
232 };
233 
234 static void smp_ipi_init_one(unsigned int virq,
235 				    struct irqaction *action)
236 {
237 	int ret;
238 
239 	irq_set_handler(virq, handle_percpu_irq);
240 	ret = setup_irq(virq, action);
241 	BUG_ON(ret);
242 }
243 
244 static unsigned int call_virq, sched_virq;
245 
246 int mips_smp_ipi_allocate(const struct cpumask *mask)
247 {
248 	int virq;
249 	struct irq_domain *ipidomain;
250 	struct device_node *node;
251 
252 	node = of_irq_find_parent(of_root);
253 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
254 
255 	/*
256 	 * Some platforms have half DT setup. So if we found irq node but
257 	 * didn't find an ipidomain, try to search for one that is not in the
258 	 * DT.
259 	 */
260 	if (node && !ipidomain)
261 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
262 
263 	/*
264 	 * There are systems which use IPI IRQ domains, but only have one
265 	 * registered when some runtime condition is met. For example a Malta
266 	 * kernel may include support for GIC & CPU interrupt controller IPI
267 	 * IRQ domains, but if run on a system with no GIC & no MT ASE then
268 	 * neither will be supported or registered.
269 	 *
270 	 * We only have a problem if we're actually using multiple CPUs so fail
271 	 * loudly if that is the case. Otherwise simply return, skipping IPI
272 	 * setup, if we're running with only a single CPU.
273 	 */
274 	if (!ipidomain) {
275 		BUG_ON(num_present_cpus() > 1);
276 		return 0;
277 	}
278 
279 	virq = irq_reserve_ipi(ipidomain, mask);
280 	BUG_ON(!virq);
281 	if (!call_virq)
282 		call_virq = virq;
283 
284 	virq = irq_reserve_ipi(ipidomain, mask);
285 	BUG_ON(!virq);
286 	if (!sched_virq)
287 		sched_virq = virq;
288 
289 	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
290 		int cpu;
291 
292 		for_each_cpu(cpu, mask) {
293 			smp_ipi_init_one(call_virq + cpu, &irq_call);
294 			smp_ipi_init_one(sched_virq + cpu, &irq_resched);
295 		}
296 	} else {
297 		smp_ipi_init_one(call_virq, &irq_call);
298 		smp_ipi_init_one(sched_virq, &irq_resched);
299 	}
300 
301 	return 0;
302 }
303 
304 int mips_smp_ipi_free(const struct cpumask *mask)
305 {
306 	struct irq_domain *ipidomain;
307 	struct device_node *node;
308 
309 	node = of_irq_find_parent(of_root);
310 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
311 
312 	/*
313 	 * Some platforms have half DT setup. So if we found irq node but
314 	 * didn't find an ipidomain, try to search for one that is not in the
315 	 * DT.
316 	 */
317 	if (node && !ipidomain)
318 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
319 
320 	BUG_ON(!ipidomain);
321 
322 	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
323 		int cpu;
324 
325 		for_each_cpu(cpu, mask) {
326 			remove_irq(call_virq + cpu, &irq_call);
327 			remove_irq(sched_virq + cpu, &irq_resched);
328 		}
329 	}
330 	irq_destroy_ipi(call_virq, mask);
331 	irq_destroy_ipi(sched_virq, mask);
332 	return 0;
333 }
334 
335 
336 static int __init mips_smp_ipi_init(void)
337 {
338 	if (num_possible_cpus() == 1)
339 		return 0;
340 
341 	mips_smp_ipi_allocate(cpu_possible_mask);
342 
343 	call_desc = irq_to_desc(call_virq);
344 	sched_desc = irq_to_desc(sched_virq);
345 
346 	return 0;
347 }
348 early_initcall(mips_smp_ipi_init);
349 #endif
350 
351 /*
352  * First C code run on the secondary CPUs after being started up by
353  * the master.
354  */
355 asmlinkage void start_secondary(void)
356 {
357 	unsigned int cpu;
358 
359 	cpu_probe();
360 	per_cpu_trap_init(false);
361 	mips_clockevent_init();
362 	mp_ops->init_secondary();
363 	cpu_report();
364 	maar_init();
365 
366 	/*
367 	 * XXX parity protection should be folded in here when it's converted
368 	 * to an option instead of something based on .cputype
369 	 */
370 
371 	calibrate_delay();
372 	preempt_disable();
373 	cpu = smp_processor_id();
374 	cpu_data[cpu].udelay_val = loops_per_jiffy;
375 
376 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
377 	notify_cpu_starting(cpu);
378 
379 	/* Notify boot CPU that we're starting & ready to sync counters */
380 	complete(&cpu_starting);
381 
382 	synchronise_count_slave(cpu);
383 
384 	/* The CPU is running and counters synchronised, now mark it online */
385 	set_cpu_online(cpu, true);
386 
387 	set_cpu_sibling_map(cpu);
388 	set_cpu_core_map(cpu);
389 
390 	calculate_cpu_foreign_map();
391 
392 	/*
393 	 * Notify boot CPU that we're up & online and it can safely return
394 	 * from __cpu_up
395 	 */
396 	complete(&cpu_running);
397 
398 	/*
399 	 * irq will be enabled in ->smp_finish(), enabling it too early
400 	 * is dangerous.
401 	 */
402 	WARN_ON_ONCE(!irqs_disabled());
403 	mp_ops->smp_finish();
404 
405 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
406 }
407 
408 static void stop_this_cpu(void *dummy)
409 {
410 	/*
411 	 * Remove this CPU:
412 	 */
413 
414 	set_cpu_online(smp_processor_id(), false);
415 	calculate_cpu_foreign_map();
416 	local_irq_disable();
417 	while (1);
418 }
419 
420 void smp_send_stop(void)
421 {
422 	smp_call_function(stop_this_cpu, NULL, 0);
423 }
424 
425 void __init smp_cpus_done(unsigned int max_cpus)
426 {
427 }
428 
429 /* called from main before smp_init() */
430 void __init smp_prepare_cpus(unsigned int max_cpus)
431 {
432 	init_new_context(current, &init_mm);
433 	current_thread_info()->cpu = 0;
434 	mp_ops->prepare_cpus(max_cpus);
435 	set_cpu_sibling_map(0);
436 	set_cpu_core_map(0);
437 	calculate_cpu_foreign_map();
438 #ifndef CONFIG_HOTPLUG_CPU
439 	init_cpu_present(cpu_possible_mask);
440 #endif
441 	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
442 }
443 
444 /* preload SMP state for boot cpu */
445 void smp_prepare_boot_cpu(void)
446 {
447 	if (mp_ops->prepare_boot_cpu)
448 		mp_ops->prepare_boot_cpu();
449 	set_cpu_possible(0, true);
450 	set_cpu_online(0, true);
451 }
452 
453 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
454 {
455 	int err;
456 
457 	err = mp_ops->boot_secondary(cpu, tidle);
458 	if (err)
459 		return err;
460 
461 	/* Wait for CPU to start and be ready to sync counters */
462 	if (!wait_for_completion_timeout(&cpu_starting,
463 					 msecs_to_jiffies(1000))) {
464 		pr_crit("CPU%u: failed to start\n", cpu);
465 		return -EIO;
466 	}
467 
468 	synchronise_count_master(cpu);
469 
470 	/* Wait for CPU to finish startup & mark itself online before return */
471 	wait_for_completion(&cpu_running);
472 	return 0;
473 }
474 
475 /* Not really SMP stuff ... */
476 int setup_profiling_timer(unsigned int multiplier)
477 {
478 	return 0;
479 }
480 
481 static void flush_tlb_all_ipi(void *info)
482 {
483 	local_flush_tlb_all();
484 }
485 
486 void flush_tlb_all(void)
487 {
488 	if (cpu_has_mmid) {
489 		htw_stop();
490 		ginvt_full();
491 		sync_ginv();
492 		instruction_hazard();
493 		htw_start();
494 		return;
495 	}
496 
497 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
498 }
499 
500 static void flush_tlb_mm_ipi(void *mm)
501 {
502 	drop_mmu_context((struct mm_struct *)mm);
503 }
504 
505 /*
506  * Special Variant of smp_call_function for use by TLB functions:
507  *
508  *  o No return value
509  *  o collapses to normal function call on UP kernels
510  *  o collapses to normal function call on systems with a single shared
511  *    primary cache.
512  */
513 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
514 {
515 	smp_call_function(func, info, 1);
516 }
517 
518 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
519 {
520 	preempt_disable();
521 
522 	smp_on_other_tlbs(func, info);
523 	func(info);
524 
525 	preempt_enable();
526 }
527 
528 /*
529  * The following tlb flush calls are invoked when old translations are
530  * being torn down, or pte attributes are changing. For single threaded
531  * address spaces, a new context is obtained on the current cpu, and tlb
532  * context on other cpus are invalidated to force a new context allocation
533  * at switch_mm time, should the mm ever be used on other cpus. For
534  * multithreaded address spaces, intercpu interrupts have to be sent.
535  * Another case where intercpu interrupts are required is when the target
536  * mm might be active on another cpu (eg debuggers doing the flushes on
537  * behalf of debugees, kswapd stealing pages from another process etc).
538  * Kanoj 07/00.
539  */
540 
541 void flush_tlb_mm(struct mm_struct *mm)
542 {
543 	preempt_disable();
544 
545 	if (cpu_has_mmid) {
546 		/*
547 		 * No need to worry about other CPUs - the ginvt in
548 		 * drop_mmu_context() will be globalized.
549 		 */
550 	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
551 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
552 	} else {
553 		unsigned int cpu;
554 
555 		for_each_online_cpu(cpu) {
556 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
557 				set_cpu_context(cpu, mm, 0);
558 		}
559 	}
560 	drop_mmu_context(mm);
561 
562 	preempt_enable();
563 }
564 
565 struct flush_tlb_data {
566 	struct vm_area_struct *vma;
567 	unsigned long addr1;
568 	unsigned long addr2;
569 };
570 
571 static void flush_tlb_range_ipi(void *info)
572 {
573 	struct flush_tlb_data *fd = info;
574 
575 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
576 }
577 
578 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
579 {
580 	struct mm_struct *mm = vma->vm_mm;
581 	unsigned long addr;
582 	u32 old_mmid;
583 
584 	preempt_disable();
585 	if (cpu_has_mmid) {
586 		htw_stop();
587 		old_mmid = read_c0_memorymapid();
588 		write_c0_memorymapid(cpu_asid(0, mm));
589 		mtc0_tlbw_hazard();
590 		addr = round_down(start, PAGE_SIZE * 2);
591 		end = round_up(end, PAGE_SIZE * 2);
592 		do {
593 			ginvt_va_mmid(addr);
594 			sync_ginv();
595 			addr += PAGE_SIZE * 2;
596 		} while (addr < end);
597 		write_c0_memorymapid(old_mmid);
598 		instruction_hazard();
599 		htw_start();
600 	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
601 		struct flush_tlb_data fd = {
602 			.vma = vma,
603 			.addr1 = start,
604 			.addr2 = end,
605 		};
606 
607 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
608 		local_flush_tlb_range(vma, start, end);
609 	} else {
610 		unsigned int cpu;
611 		int exec = vma->vm_flags & VM_EXEC;
612 
613 		for_each_online_cpu(cpu) {
614 			/*
615 			 * flush_cache_range() will only fully flush icache if
616 			 * the VMA is executable, otherwise we must invalidate
617 			 * ASID without it appearing to has_valid_asid() as if
618 			 * mm has been completely unused by that CPU.
619 			 */
620 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
621 				set_cpu_context(cpu, mm, !exec);
622 		}
623 		local_flush_tlb_range(vma, start, end);
624 	}
625 	preempt_enable();
626 }
627 
628 static void flush_tlb_kernel_range_ipi(void *info)
629 {
630 	struct flush_tlb_data *fd = info;
631 
632 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
633 }
634 
635 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
636 {
637 	struct flush_tlb_data fd = {
638 		.addr1 = start,
639 		.addr2 = end,
640 	};
641 
642 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
643 }
644 
645 static void flush_tlb_page_ipi(void *info)
646 {
647 	struct flush_tlb_data *fd = info;
648 
649 	local_flush_tlb_page(fd->vma, fd->addr1);
650 }
651 
652 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
653 {
654 	u32 old_mmid;
655 
656 	preempt_disable();
657 	if (cpu_has_mmid) {
658 		htw_stop();
659 		old_mmid = read_c0_memorymapid();
660 		write_c0_memorymapid(cpu_asid(0, vma->vm_mm));
661 		mtc0_tlbw_hazard();
662 		ginvt_va_mmid(page);
663 		sync_ginv();
664 		write_c0_memorymapid(old_mmid);
665 		instruction_hazard();
666 		htw_start();
667 	} else if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
668 		   (current->mm != vma->vm_mm)) {
669 		struct flush_tlb_data fd = {
670 			.vma = vma,
671 			.addr1 = page,
672 		};
673 
674 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
675 		local_flush_tlb_page(vma, page);
676 	} else {
677 		unsigned int cpu;
678 
679 		for_each_online_cpu(cpu) {
680 			/*
681 			 * flush_cache_page() only does partial flushes, so
682 			 * invalidate ASID without it appearing to
683 			 * has_valid_asid() as if mm has been completely unused
684 			 * by that CPU.
685 			 */
686 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
687 				set_cpu_context(cpu, vma->vm_mm, 1);
688 		}
689 		local_flush_tlb_page(vma, page);
690 	}
691 	preempt_enable();
692 }
693 
694 static void flush_tlb_one_ipi(void *info)
695 {
696 	unsigned long vaddr = (unsigned long) info;
697 
698 	local_flush_tlb_one(vaddr);
699 }
700 
701 void flush_tlb_one(unsigned long vaddr)
702 {
703 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
704 }
705 
706 EXPORT_SYMBOL(flush_tlb_page);
707 EXPORT_SYMBOL(flush_tlb_one);
708 
709 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
710 
711 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
712 static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd);
713 
714 void tick_broadcast(const struct cpumask *mask)
715 {
716 	atomic_t *count;
717 	call_single_data_t *csd;
718 	int cpu;
719 
720 	for_each_cpu(cpu, mask) {
721 		count = &per_cpu(tick_broadcast_count, cpu);
722 		csd = &per_cpu(tick_broadcast_csd, cpu);
723 
724 		if (atomic_inc_return(count) == 1)
725 			smp_call_function_single_async(cpu, csd);
726 	}
727 }
728 
729 static void tick_broadcast_callee(void *info)
730 {
731 	int cpu = smp_processor_id();
732 	tick_receive_broadcast();
733 	atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
734 }
735 
736 static int __init tick_broadcast_init(void)
737 {
738 	call_single_data_t *csd;
739 	int cpu;
740 
741 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
742 		csd = &per_cpu(tick_broadcast_csd, cpu);
743 		csd->func = tick_broadcast_callee;
744 	}
745 
746 	return 0;
747 }
748 early_initcall(tick_broadcast_init);
749 
750 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
751