1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 2 5 * of the License, or (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 * 16 * Copyright (C) 2000, 2001 Kanoj Sarcar 17 * Copyright (C) 2000, 2001 Ralf Baechle 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 20 */ 21 #include <linux/cache.h> 22 #include <linux/delay.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/smp.h> 26 #include <linux/spinlock.h> 27 #include <linux/threads.h> 28 #include <linux/module.h> 29 #include <linux/time.h> 30 #include <linux/timex.h> 31 #include <linux/sched.h> 32 #include <linux/cpumask.h> 33 #include <linux/cpu.h> 34 #include <linux/err.h> 35 #include <linux/ftrace.h> 36 37 #include <linux/atomic.h> 38 #include <asm/cpu.h> 39 #include <asm/processor.h> 40 #include <asm/idle.h> 41 #include <asm/r4k-timer.h> 42 #include <asm/mmu_context.h> 43 #include <asm/time.h> 44 #include <asm/setup.h> 45 46 cpumask_t cpu_callin_map; /* Bitmask of started secondaries */ 47 48 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 49 EXPORT_SYMBOL(__cpu_number_map); 50 51 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 52 EXPORT_SYMBOL(__cpu_logical_map); 53 54 /* Number of TCs (or siblings in Intel speak) per CPU core */ 55 int smp_num_siblings = 1; 56 EXPORT_SYMBOL(smp_num_siblings); 57 58 /* representing the TCs (or siblings in Intel speak) of each logical CPU */ 59 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 60 EXPORT_SYMBOL(cpu_sibling_map); 61 62 /* representing the core map of multi-core chips of each logical CPU */ 63 cpumask_t cpu_core_map[NR_CPUS] __read_mostly; 64 EXPORT_SYMBOL(cpu_core_map); 65 66 /* 67 * A logcal cpu mask containing only one VPE per core to 68 * reduce the number of IPIs on large MT systems. 69 */ 70 cpumask_t cpu_foreign_map __read_mostly; 71 EXPORT_SYMBOL(cpu_foreign_map); 72 73 /* representing cpus for which sibling maps can be computed */ 74 static cpumask_t cpu_sibling_setup_map; 75 76 /* representing cpus for which core maps can be computed */ 77 static cpumask_t cpu_core_setup_map; 78 79 cpumask_t cpu_coherent_mask; 80 81 static inline void set_cpu_sibling_map(int cpu) 82 { 83 int i; 84 85 cpumask_set_cpu(cpu, &cpu_sibling_setup_map); 86 87 if (smp_num_siblings > 1) { 88 for_each_cpu(i, &cpu_sibling_setup_map) { 89 if (cpu_data[cpu].package == cpu_data[i].package && 90 cpu_data[cpu].core == cpu_data[i].core) { 91 cpumask_set_cpu(i, &cpu_sibling_map[cpu]); 92 cpumask_set_cpu(cpu, &cpu_sibling_map[i]); 93 } 94 } 95 } else 96 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]); 97 } 98 99 static inline void set_cpu_core_map(int cpu) 100 { 101 int i; 102 103 cpumask_set_cpu(cpu, &cpu_core_setup_map); 104 105 for_each_cpu(i, &cpu_core_setup_map) { 106 if (cpu_data[cpu].package == cpu_data[i].package) { 107 cpumask_set_cpu(i, &cpu_core_map[cpu]); 108 cpumask_set_cpu(cpu, &cpu_core_map[i]); 109 } 110 } 111 } 112 113 /* 114 * Calculate a new cpu_foreign_map mask whenever a 115 * new cpu appears or disappears. 116 */ 117 static inline void calculate_cpu_foreign_map(void) 118 { 119 int i, k, core_present; 120 cpumask_t temp_foreign_map; 121 122 /* Re-calculate the mask */ 123 for_each_online_cpu(i) { 124 core_present = 0; 125 for_each_cpu(k, &temp_foreign_map) 126 if (cpu_data[i].package == cpu_data[k].package && 127 cpu_data[i].core == cpu_data[k].core) 128 core_present = 1; 129 if (!core_present) 130 cpumask_set_cpu(i, &temp_foreign_map); 131 } 132 133 cpumask_copy(&cpu_foreign_map, &temp_foreign_map); 134 } 135 136 struct plat_smp_ops *mp_ops; 137 EXPORT_SYMBOL(mp_ops); 138 139 void register_smp_ops(struct plat_smp_ops *ops) 140 { 141 if (mp_ops) 142 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 143 144 mp_ops = ops; 145 } 146 147 /* 148 * First C code run on the secondary CPUs after being started up by 149 * the master. 150 */ 151 asmlinkage void start_secondary(void) 152 { 153 unsigned int cpu; 154 155 cpu_probe(); 156 per_cpu_trap_init(false); 157 mips_clockevent_init(); 158 mp_ops->init_secondary(); 159 cpu_report(); 160 161 /* 162 * XXX parity protection should be folded in here when it's converted 163 * to an option instead of something based on .cputype 164 */ 165 166 calibrate_delay(); 167 preempt_disable(); 168 cpu = smp_processor_id(); 169 cpu_data[cpu].udelay_val = loops_per_jiffy; 170 171 cpumask_set_cpu(cpu, &cpu_coherent_mask); 172 notify_cpu_starting(cpu); 173 174 set_cpu_online(cpu, true); 175 176 set_cpu_sibling_map(cpu); 177 set_cpu_core_map(cpu); 178 179 calculate_cpu_foreign_map(); 180 181 cpumask_set_cpu(cpu, &cpu_callin_map); 182 183 synchronise_count_slave(cpu); 184 185 /* 186 * irq will be enabled in ->smp_finish(), enabling it too early 187 * is dangerous. 188 */ 189 WARN_ON_ONCE(!irqs_disabled()); 190 mp_ops->smp_finish(); 191 192 cpu_startup_entry(CPUHP_ONLINE); 193 } 194 195 /* 196 * Call into both interrupt handlers, as we share the IPI for them 197 */ 198 void __irq_entry smp_call_function_interrupt(void) 199 { 200 irq_enter(); 201 generic_smp_call_function_interrupt(); 202 irq_exit(); 203 } 204 205 static void stop_this_cpu(void *dummy) 206 { 207 /* 208 * Remove this CPU. Be a bit slow here and 209 * set the bits for every online CPU so we don't miss 210 * any IPI whilst taking this VPE down. 211 */ 212 213 cpumask_copy(&cpu_foreign_map, cpu_online_mask); 214 215 /* Make it visible to every other CPU */ 216 smp_mb(); 217 218 set_cpu_online(smp_processor_id(), false); 219 calculate_cpu_foreign_map(); 220 local_irq_disable(); 221 while (1); 222 } 223 224 void smp_send_stop(void) 225 { 226 smp_call_function(stop_this_cpu, NULL, 0); 227 } 228 229 void __init smp_cpus_done(unsigned int max_cpus) 230 { 231 } 232 233 /* called from main before smp_init() */ 234 void __init smp_prepare_cpus(unsigned int max_cpus) 235 { 236 init_new_context(current, &init_mm); 237 current_thread_info()->cpu = 0; 238 mp_ops->prepare_cpus(max_cpus); 239 set_cpu_sibling_map(0); 240 set_cpu_core_map(0); 241 calculate_cpu_foreign_map(); 242 #ifndef CONFIG_HOTPLUG_CPU 243 init_cpu_present(cpu_possible_mask); 244 #endif 245 cpumask_copy(&cpu_coherent_mask, cpu_possible_mask); 246 } 247 248 /* preload SMP state for boot cpu */ 249 void smp_prepare_boot_cpu(void) 250 { 251 set_cpu_possible(0, true); 252 set_cpu_online(0, true); 253 cpumask_set_cpu(0, &cpu_callin_map); 254 } 255 256 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 257 { 258 mp_ops->boot_secondary(cpu, tidle); 259 260 /* 261 * Trust is futile. We should really have timeouts ... 262 */ 263 while (!cpumask_test_cpu(cpu, &cpu_callin_map)) { 264 udelay(100); 265 schedule(); 266 } 267 268 synchronise_count_master(cpu); 269 return 0; 270 } 271 272 /* Not really SMP stuff ... */ 273 int setup_profiling_timer(unsigned int multiplier) 274 { 275 return 0; 276 } 277 278 static void flush_tlb_all_ipi(void *info) 279 { 280 local_flush_tlb_all(); 281 } 282 283 void flush_tlb_all(void) 284 { 285 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 286 } 287 288 static void flush_tlb_mm_ipi(void *mm) 289 { 290 local_flush_tlb_mm((struct mm_struct *)mm); 291 } 292 293 /* 294 * Special Variant of smp_call_function for use by TLB functions: 295 * 296 * o No return value 297 * o collapses to normal function call on UP kernels 298 * o collapses to normal function call on systems with a single shared 299 * primary cache. 300 */ 301 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) 302 { 303 smp_call_function(func, info, 1); 304 } 305 306 static inline void smp_on_each_tlb(void (*func) (void *info), void *info) 307 { 308 preempt_disable(); 309 310 smp_on_other_tlbs(func, info); 311 func(info); 312 313 preempt_enable(); 314 } 315 316 /* 317 * The following tlb flush calls are invoked when old translations are 318 * being torn down, or pte attributes are changing. For single threaded 319 * address spaces, a new context is obtained on the current cpu, and tlb 320 * context on other cpus are invalidated to force a new context allocation 321 * at switch_mm time, should the mm ever be used on other cpus. For 322 * multithreaded address spaces, intercpu interrupts have to be sent. 323 * Another case where intercpu interrupts are required is when the target 324 * mm might be active on another cpu (eg debuggers doing the flushes on 325 * behalf of debugees, kswapd stealing pages from another process etc). 326 * Kanoj 07/00. 327 */ 328 329 void flush_tlb_mm(struct mm_struct *mm) 330 { 331 preempt_disable(); 332 333 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 334 smp_on_other_tlbs(flush_tlb_mm_ipi, mm); 335 } else { 336 unsigned int cpu; 337 338 for_each_online_cpu(cpu) { 339 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 340 cpu_context(cpu, mm) = 0; 341 } 342 } 343 local_flush_tlb_mm(mm); 344 345 preempt_enable(); 346 } 347 348 struct flush_tlb_data { 349 struct vm_area_struct *vma; 350 unsigned long addr1; 351 unsigned long addr2; 352 }; 353 354 static void flush_tlb_range_ipi(void *info) 355 { 356 struct flush_tlb_data *fd = info; 357 358 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 359 } 360 361 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 362 { 363 struct mm_struct *mm = vma->vm_mm; 364 365 preempt_disable(); 366 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 367 struct flush_tlb_data fd = { 368 .vma = vma, 369 .addr1 = start, 370 .addr2 = end, 371 }; 372 373 smp_on_other_tlbs(flush_tlb_range_ipi, &fd); 374 } else { 375 unsigned int cpu; 376 377 for_each_online_cpu(cpu) { 378 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 379 cpu_context(cpu, mm) = 0; 380 } 381 } 382 local_flush_tlb_range(vma, start, end); 383 preempt_enable(); 384 } 385 386 static void flush_tlb_kernel_range_ipi(void *info) 387 { 388 struct flush_tlb_data *fd = info; 389 390 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 391 } 392 393 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 394 { 395 struct flush_tlb_data fd = { 396 .addr1 = start, 397 .addr2 = end, 398 }; 399 400 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 401 } 402 403 static void flush_tlb_page_ipi(void *info) 404 { 405 struct flush_tlb_data *fd = info; 406 407 local_flush_tlb_page(fd->vma, fd->addr1); 408 } 409 410 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 411 { 412 preempt_disable(); 413 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 414 struct flush_tlb_data fd = { 415 .vma = vma, 416 .addr1 = page, 417 }; 418 419 smp_on_other_tlbs(flush_tlb_page_ipi, &fd); 420 } else { 421 unsigned int cpu; 422 423 for_each_online_cpu(cpu) { 424 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) 425 cpu_context(cpu, vma->vm_mm) = 0; 426 } 427 } 428 local_flush_tlb_page(vma, page); 429 preempt_enable(); 430 } 431 432 static void flush_tlb_one_ipi(void *info) 433 { 434 unsigned long vaddr = (unsigned long) info; 435 436 local_flush_tlb_one(vaddr); 437 } 438 439 void flush_tlb_one(unsigned long vaddr) 440 { 441 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); 442 } 443 444 EXPORT_SYMBOL(flush_tlb_page); 445 EXPORT_SYMBOL(flush_tlb_one); 446 447 #if defined(CONFIG_KEXEC) 448 void (*dump_ipi_function_ptr)(void *) = NULL; 449 void dump_send_ipi(void (*dump_ipi_callback)(void *)) 450 { 451 int i; 452 int cpu = smp_processor_id(); 453 454 dump_ipi_function_ptr = dump_ipi_callback; 455 smp_mb(); 456 for_each_online_cpu(i) 457 if (i != cpu) 458 mp_ops->send_ipi_single(i, SMP_DUMP); 459 460 } 461 EXPORT_SYMBOL(dump_send_ipi); 462 #endif 463 464 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 465 466 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count); 467 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd); 468 469 void tick_broadcast(const struct cpumask *mask) 470 { 471 atomic_t *count; 472 struct call_single_data *csd; 473 int cpu; 474 475 for_each_cpu(cpu, mask) { 476 count = &per_cpu(tick_broadcast_count, cpu); 477 csd = &per_cpu(tick_broadcast_csd, cpu); 478 479 if (atomic_inc_return(count) == 1) 480 smp_call_function_single_async(cpu, csd); 481 } 482 } 483 484 static void tick_broadcast_callee(void *info) 485 { 486 int cpu = smp_processor_id(); 487 tick_receive_broadcast(); 488 atomic_set(&per_cpu(tick_broadcast_count, cpu), 0); 489 } 490 491 static int __init tick_broadcast_init(void) 492 { 493 struct call_single_data *csd; 494 int cpu; 495 496 for (cpu = 0; cpu < NR_CPUS; cpu++) { 497 csd = &per_cpu(tick_broadcast_csd, cpu); 498 csd->func = tick_broadcast_callee; 499 } 500 501 return 0; 502 } 503 early_initcall(tick_broadcast_init); 504 505 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */ 506