1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 2 5 * of the License, or (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 * 16 * Copyright (C) 2000, 2001 Kanoj Sarcar 17 * Copyright (C) 2000, 2001 Ralf Baechle 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 20 */ 21 #include <linux/cache.h> 22 #include <linux/delay.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/spinlock.h> 26 #include <linux/threads.h> 27 #include <linux/module.h> 28 #include <linux/time.h> 29 #include <linux/timex.h> 30 #include <linux/sched.h> 31 #include <linux/cpumask.h> 32 #include <linux/cpu.h> 33 #include <linux/err.h> 34 35 #include <asm/atomic.h> 36 #include <asm/cpu.h> 37 #include <asm/processor.h> 38 #include <asm/r4k-timer.h> 39 #include <asm/system.h> 40 #include <asm/mmu_context.h> 41 #include <asm/time.h> 42 43 #ifdef CONFIG_MIPS_MT_SMTC 44 #include <asm/mipsmtregs.h> 45 #endif /* CONFIG_MIPS_MT_SMTC */ 46 47 static volatile cpumask_t cpu_callin_map; /* Bitmask of started secondaries */ 48 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 49 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 50 51 extern void cpu_idle(void); 52 53 /* Number of TCs (or siblings in Intel speak) per CPU core */ 54 int smp_num_siblings = 1; 55 EXPORT_SYMBOL(smp_num_siblings); 56 57 /* representing the TCs (or siblings in Intel speak) of each logical CPU */ 58 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 59 EXPORT_SYMBOL(cpu_sibling_map); 60 61 /* representing cpus for which sibling maps can be computed */ 62 static cpumask_t cpu_sibling_setup_map; 63 64 static inline void set_cpu_sibling_map(int cpu) 65 { 66 int i; 67 68 cpu_set(cpu, cpu_sibling_setup_map); 69 70 if (smp_num_siblings > 1) { 71 for_each_cpu_mask(i, cpu_sibling_setup_map) { 72 if (cpu_data[cpu].core == cpu_data[i].core) { 73 cpu_set(i, cpu_sibling_map[cpu]); 74 cpu_set(cpu, cpu_sibling_map[i]); 75 } 76 } 77 } else 78 cpu_set(cpu, cpu_sibling_map[cpu]); 79 } 80 81 struct plat_smp_ops *mp_ops; 82 83 __cpuinit void register_smp_ops(struct plat_smp_ops *ops) 84 { 85 if (mp_ops) 86 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 87 88 mp_ops = ops; 89 } 90 91 /* 92 * First C code run on the secondary CPUs after being started up by 93 * the master. 94 */ 95 asmlinkage __cpuinit void start_secondary(void) 96 { 97 unsigned int cpu; 98 99 #ifdef CONFIG_MIPS_MT_SMTC 100 /* Only do cpu_probe for first TC of CPU */ 101 if ((read_c0_tcbind() & TCBIND_CURTC) == 0) 102 #endif /* CONFIG_MIPS_MT_SMTC */ 103 cpu_probe(); 104 cpu_report(); 105 per_cpu_trap_init(); 106 mips_clockevent_init(); 107 mp_ops->init_secondary(); 108 109 /* 110 * XXX parity protection should be folded in here when it's converted 111 * to an option instead of something based on .cputype 112 */ 113 114 calibrate_delay(); 115 preempt_disable(); 116 cpu = smp_processor_id(); 117 cpu_data[cpu].udelay_val = loops_per_jiffy; 118 119 notify_cpu_starting(cpu); 120 121 mp_ops->smp_finish(); 122 set_cpu_sibling_map(cpu); 123 124 cpu_set(cpu, cpu_callin_map); 125 126 synchronise_count_slave(); 127 128 cpu_idle(); 129 } 130 131 void arch_send_call_function_ipi(cpumask_t mask) 132 { 133 mp_ops->send_ipi_mask(mask, SMP_CALL_FUNCTION); 134 } 135 136 /* 137 * We reuse the same vector for the single IPI 138 */ 139 void arch_send_call_function_single_ipi(int cpu) 140 { 141 mp_ops->send_ipi_mask(cpumask_of_cpu(cpu), SMP_CALL_FUNCTION); 142 } 143 144 /* 145 * Call into both interrupt handlers, as we share the IPI for them 146 */ 147 void smp_call_function_interrupt(void) 148 { 149 irq_enter(); 150 generic_smp_call_function_single_interrupt(); 151 generic_smp_call_function_interrupt(); 152 irq_exit(); 153 } 154 155 static void stop_this_cpu(void *dummy) 156 { 157 /* 158 * Remove this CPU: 159 */ 160 cpu_clear(smp_processor_id(), cpu_online_map); 161 for (;;) { 162 if (cpu_wait) 163 (*cpu_wait)(); /* Wait if available. */ 164 } 165 } 166 167 void smp_send_stop(void) 168 { 169 smp_call_function(stop_this_cpu, NULL, 0); 170 } 171 172 void __init smp_cpus_done(unsigned int max_cpus) 173 { 174 mp_ops->cpus_done(); 175 synchronise_count_master(); 176 } 177 178 /* called from main before smp_init() */ 179 void __init smp_prepare_cpus(unsigned int max_cpus) 180 { 181 init_new_context(current, &init_mm); 182 current_thread_info()->cpu = 0; 183 mp_ops->prepare_cpus(max_cpus); 184 set_cpu_sibling_map(0); 185 #ifndef CONFIG_HOTPLUG_CPU 186 cpu_present_map = cpu_possible_map; 187 #endif 188 } 189 190 /* preload SMP state for boot cpu */ 191 void __devinit smp_prepare_boot_cpu(void) 192 { 193 cpu_set(0, cpu_possible_map); 194 cpu_set(0, cpu_online_map); 195 cpu_set(0, cpu_callin_map); 196 } 197 198 /* 199 * Called once for each "cpu_possible(cpu)". Needs to spin up the cpu 200 * and keep control until "cpu_online(cpu)" is set. Note: cpu is 201 * physical, not logical. 202 */ 203 int __cpuinit __cpu_up(unsigned int cpu) 204 { 205 struct task_struct *idle; 206 207 /* 208 * Processor goes to start_secondary(), sets online flag 209 * The following code is purely to make sure 210 * Linux can schedule processes on this slave. 211 */ 212 idle = fork_idle(cpu); 213 if (IS_ERR(idle)) 214 panic(KERN_ERR "Fork failed for CPU %d", cpu); 215 216 mp_ops->boot_secondary(cpu, idle); 217 218 /* 219 * Trust is futile. We should really have timeouts ... 220 */ 221 while (!cpu_isset(cpu, cpu_callin_map)) 222 udelay(100); 223 224 cpu_set(cpu, cpu_online_map); 225 226 return 0; 227 } 228 229 /* Not really SMP stuff ... */ 230 int setup_profiling_timer(unsigned int multiplier) 231 { 232 return 0; 233 } 234 235 static void flush_tlb_all_ipi(void *info) 236 { 237 local_flush_tlb_all(); 238 } 239 240 void flush_tlb_all(void) 241 { 242 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 243 } 244 245 static void flush_tlb_mm_ipi(void *mm) 246 { 247 local_flush_tlb_mm((struct mm_struct *)mm); 248 } 249 250 /* 251 * Special Variant of smp_call_function for use by TLB functions: 252 * 253 * o No return value 254 * o collapses to normal function call on UP kernels 255 * o collapses to normal function call on systems with a single shared 256 * primary cache. 257 * o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core. 258 */ 259 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) 260 { 261 #ifndef CONFIG_MIPS_MT_SMTC 262 smp_call_function(func, info, 1); 263 #endif 264 } 265 266 static inline void smp_on_each_tlb(void (*func) (void *info), void *info) 267 { 268 preempt_disable(); 269 270 smp_on_other_tlbs(func, info); 271 func(info); 272 273 preempt_enable(); 274 } 275 276 /* 277 * The following tlb flush calls are invoked when old translations are 278 * being torn down, or pte attributes are changing. For single threaded 279 * address spaces, a new context is obtained on the current cpu, and tlb 280 * context on other cpus are invalidated to force a new context allocation 281 * at switch_mm time, should the mm ever be used on other cpus. For 282 * multithreaded address spaces, intercpu interrupts have to be sent. 283 * Another case where intercpu interrupts are required is when the target 284 * mm might be active on another cpu (eg debuggers doing the flushes on 285 * behalf of debugees, kswapd stealing pages from another process etc). 286 * Kanoj 07/00. 287 */ 288 289 void flush_tlb_mm(struct mm_struct *mm) 290 { 291 preempt_disable(); 292 293 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 294 smp_on_other_tlbs(flush_tlb_mm_ipi, mm); 295 } else { 296 cpumask_t mask = cpu_online_map; 297 unsigned int cpu; 298 299 cpu_clear(smp_processor_id(), mask); 300 for_each_cpu_mask(cpu, mask) 301 if (cpu_context(cpu, mm)) 302 cpu_context(cpu, mm) = 0; 303 } 304 local_flush_tlb_mm(mm); 305 306 preempt_enable(); 307 } 308 309 struct flush_tlb_data { 310 struct vm_area_struct *vma; 311 unsigned long addr1; 312 unsigned long addr2; 313 }; 314 315 static void flush_tlb_range_ipi(void *info) 316 { 317 struct flush_tlb_data *fd = info; 318 319 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 320 } 321 322 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 323 { 324 struct mm_struct *mm = vma->vm_mm; 325 326 preempt_disable(); 327 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 328 struct flush_tlb_data fd = { 329 .vma = vma, 330 .addr1 = start, 331 .addr2 = end, 332 }; 333 334 smp_on_other_tlbs(flush_tlb_range_ipi, &fd); 335 } else { 336 cpumask_t mask = cpu_online_map; 337 unsigned int cpu; 338 339 cpu_clear(smp_processor_id(), mask); 340 for_each_cpu_mask(cpu, mask) 341 if (cpu_context(cpu, mm)) 342 cpu_context(cpu, mm) = 0; 343 } 344 local_flush_tlb_range(vma, start, end); 345 preempt_enable(); 346 } 347 348 static void flush_tlb_kernel_range_ipi(void *info) 349 { 350 struct flush_tlb_data *fd = info; 351 352 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 353 } 354 355 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 356 { 357 struct flush_tlb_data fd = { 358 .addr1 = start, 359 .addr2 = end, 360 }; 361 362 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 363 } 364 365 static void flush_tlb_page_ipi(void *info) 366 { 367 struct flush_tlb_data *fd = info; 368 369 local_flush_tlb_page(fd->vma, fd->addr1); 370 } 371 372 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 373 { 374 preempt_disable(); 375 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 376 struct flush_tlb_data fd = { 377 .vma = vma, 378 .addr1 = page, 379 }; 380 381 smp_on_other_tlbs(flush_tlb_page_ipi, &fd); 382 } else { 383 cpumask_t mask = cpu_online_map; 384 unsigned int cpu; 385 386 cpu_clear(smp_processor_id(), mask); 387 for_each_cpu_mask(cpu, mask) 388 if (cpu_context(cpu, vma->vm_mm)) 389 cpu_context(cpu, vma->vm_mm) = 0; 390 } 391 local_flush_tlb_page(vma, page); 392 preempt_enable(); 393 } 394 395 static void flush_tlb_one_ipi(void *info) 396 { 397 unsigned long vaddr = (unsigned long) info; 398 399 local_flush_tlb_one(vaddr); 400 } 401 402 void flush_tlb_one(unsigned long vaddr) 403 { 404 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); 405 } 406 407 EXPORT_SYMBOL(flush_tlb_page); 408 EXPORT_SYMBOL(flush_tlb_one); 409