xref: /openbmc/linux/arch/mips/kernel/smp.c (revision a8fe58ce)
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 
37 #include <linux/atomic.h>
38 #include <asm/cpu.h>
39 #include <asm/processor.h>
40 #include <asm/idle.h>
41 #include <asm/r4k-timer.h>
42 #include <asm/mmu_context.h>
43 #include <asm/time.h>
44 #include <asm/setup.h>
45 #include <asm/maar.h>
46 
47 cpumask_t cpu_callin_map;		/* Bitmask of started secondaries */
48 
49 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
50 EXPORT_SYMBOL(__cpu_number_map);
51 
52 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
53 EXPORT_SYMBOL(__cpu_logical_map);
54 
55 /* Number of TCs (or siblings in Intel speak) per CPU core */
56 int smp_num_siblings = 1;
57 EXPORT_SYMBOL(smp_num_siblings);
58 
59 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
60 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
61 EXPORT_SYMBOL(cpu_sibling_map);
62 
63 /* representing the core map of multi-core chips of each logical CPU */
64 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
65 EXPORT_SYMBOL(cpu_core_map);
66 
67 /*
68  * A logcal cpu mask containing only one VPE per core to
69  * reduce the number of IPIs on large MT systems.
70  */
71 cpumask_t cpu_foreign_map __read_mostly;
72 EXPORT_SYMBOL(cpu_foreign_map);
73 
74 /* representing cpus for which sibling maps can be computed */
75 static cpumask_t cpu_sibling_setup_map;
76 
77 /* representing cpus for which core maps can be computed */
78 static cpumask_t cpu_core_setup_map;
79 
80 cpumask_t cpu_coherent_mask;
81 
82 static inline void set_cpu_sibling_map(int cpu)
83 {
84 	int i;
85 
86 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
87 
88 	if (smp_num_siblings > 1) {
89 		for_each_cpu(i, &cpu_sibling_setup_map) {
90 			if (cpu_data[cpu].package == cpu_data[i].package &&
91 				    cpu_data[cpu].core == cpu_data[i].core) {
92 				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
93 				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
94 			}
95 		}
96 	} else
97 		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
98 }
99 
100 static inline void set_cpu_core_map(int cpu)
101 {
102 	int i;
103 
104 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
105 
106 	for_each_cpu(i, &cpu_core_setup_map) {
107 		if (cpu_data[cpu].package == cpu_data[i].package) {
108 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
109 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
110 		}
111 	}
112 }
113 
114 /*
115  * Calculate a new cpu_foreign_map mask whenever a
116  * new cpu appears or disappears.
117  */
118 static inline void calculate_cpu_foreign_map(void)
119 {
120 	int i, k, core_present;
121 	cpumask_t temp_foreign_map;
122 
123 	/* Re-calculate the mask */
124 	for_each_online_cpu(i) {
125 		core_present = 0;
126 		for_each_cpu(k, &temp_foreign_map)
127 			if (cpu_data[i].package == cpu_data[k].package &&
128 			    cpu_data[i].core == cpu_data[k].core)
129 				core_present = 1;
130 		if (!core_present)
131 			cpumask_set_cpu(i, &temp_foreign_map);
132 	}
133 
134 	cpumask_copy(&cpu_foreign_map, &temp_foreign_map);
135 }
136 
137 struct plat_smp_ops *mp_ops;
138 EXPORT_SYMBOL(mp_ops);
139 
140 void register_smp_ops(struct plat_smp_ops *ops)
141 {
142 	if (mp_ops)
143 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
144 
145 	mp_ops = ops;
146 }
147 
148 /*
149  * First C code run on the secondary CPUs after being started up by
150  * the master.
151  */
152 asmlinkage void start_secondary(void)
153 {
154 	unsigned int cpu;
155 
156 	cpu_probe();
157 	per_cpu_trap_init(false);
158 	mips_clockevent_init();
159 	mp_ops->init_secondary();
160 	cpu_report();
161 	maar_init();
162 
163 	/*
164 	 * XXX parity protection should be folded in here when it's converted
165 	 * to an option instead of something based on .cputype
166 	 */
167 
168 	calibrate_delay();
169 	preempt_disable();
170 	cpu = smp_processor_id();
171 	cpu_data[cpu].udelay_val = loops_per_jiffy;
172 
173 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
174 	notify_cpu_starting(cpu);
175 
176 	set_cpu_online(cpu, true);
177 
178 	set_cpu_sibling_map(cpu);
179 	set_cpu_core_map(cpu);
180 
181 	calculate_cpu_foreign_map();
182 
183 	cpumask_set_cpu(cpu, &cpu_callin_map);
184 
185 	synchronise_count_slave(cpu);
186 
187 	/*
188 	 * irq will be enabled in ->smp_finish(), enabling it too early
189 	 * is dangerous.
190 	 */
191 	WARN_ON_ONCE(!irqs_disabled());
192 	mp_ops->smp_finish();
193 
194 	cpu_startup_entry(CPUHP_ONLINE);
195 }
196 
197 static void stop_this_cpu(void *dummy)
198 {
199 	/*
200 	 * Remove this CPU. Be a bit slow here and
201 	 * set the bits for every online CPU so we don't miss
202 	 * any IPI whilst taking this VPE down.
203 	 */
204 
205 	cpumask_copy(&cpu_foreign_map, cpu_online_mask);
206 
207 	/* Make it visible to every other CPU */
208 	smp_mb();
209 
210 	set_cpu_online(smp_processor_id(), false);
211 	calculate_cpu_foreign_map();
212 	local_irq_disable();
213 	while (1);
214 }
215 
216 void smp_send_stop(void)
217 {
218 	smp_call_function(stop_this_cpu, NULL, 0);
219 }
220 
221 void __init smp_cpus_done(unsigned int max_cpus)
222 {
223 }
224 
225 /* called from main before smp_init() */
226 void __init smp_prepare_cpus(unsigned int max_cpus)
227 {
228 	init_new_context(current, &init_mm);
229 	current_thread_info()->cpu = 0;
230 	mp_ops->prepare_cpus(max_cpus);
231 	set_cpu_sibling_map(0);
232 	set_cpu_core_map(0);
233 	calculate_cpu_foreign_map();
234 #ifndef CONFIG_HOTPLUG_CPU
235 	init_cpu_present(cpu_possible_mask);
236 #endif
237 	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
238 }
239 
240 /* preload SMP state for boot cpu */
241 void smp_prepare_boot_cpu(void)
242 {
243 	set_cpu_possible(0, true);
244 	set_cpu_online(0, true);
245 	cpumask_set_cpu(0, &cpu_callin_map);
246 }
247 
248 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
249 {
250 	mp_ops->boot_secondary(cpu, tidle);
251 
252 	/*
253 	 * Trust is futile.  We should really have timeouts ...
254 	 */
255 	while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
256 		udelay(100);
257 		schedule();
258 	}
259 
260 	synchronise_count_master(cpu);
261 	return 0;
262 }
263 
264 /* Not really SMP stuff ... */
265 int setup_profiling_timer(unsigned int multiplier)
266 {
267 	return 0;
268 }
269 
270 static void flush_tlb_all_ipi(void *info)
271 {
272 	local_flush_tlb_all();
273 }
274 
275 void flush_tlb_all(void)
276 {
277 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
278 }
279 
280 static void flush_tlb_mm_ipi(void *mm)
281 {
282 	local_flush_tlb_mm((struct mm_struct *)mm);
283 }
284 
285 /*
286  * Special Variant of smp_call_function for use by TLB functions:
287  *
288  *  o No return value
289  *  o collapses to normal function call on UP kernels
290  *  o collapses to normal function call on systems with a single shared
291  *    primary cache.
292  */
293 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
294 {
295 	smp_call_function(func, info, 1);
296 }
297 
298 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
299 {
300 	preempt_disable();
301 
302 	smp_on_other_tlbs(func, info);
303 	func(info);
304 
305 	preempt_enable();
306 }
307 
308 /*
309  * The following tlb flush calls are invoked when old translations are
310  * being torn down, or pte attributes are changing. For single threaded
311  * address spaces, a new context is obtained on the current cpu, and tlb
312  * context on other cpus are invalidated to force a new context allocation
313  * at switch_mm time, should the mm ever be used on other cpus. For
314  * multithreaded address spaces, intercpu interrupts have to be sent.
315  * Another case where intercpu interrupts are required is when the target
316  * mm might be active on another cpu (eg debuggers doing the flushes on
317  * behalf of debugees, kswapd stealing pages from another process etc).
318  * Kanoj 07/00.
319  */
320 
321 void flush_tlb_mm(struct mm_struct *mm)
322 {
323 	preempt_disable();
324 
325 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
326 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
327 	} else {
328 		unsigned int cpu;
329 
330 		for_each_online_cpu(cpu) {
331 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
332 				cpu_context(cpu, mm) = 0;
333 		}
334 	}
335 	local_flush_tlb_mm(mm);
336 
337 	preempt_enable();
338 }
339 
340 struct flush_tlb_data {
341 	struct vm_area_struct *vma;
342 	unsigned long addr1;
343 	unsigned long addr2;
344 };
345 
346 static void flush_tlb_range_ipi(void *info)
347 {
348 	struct flush_tlb_data *fd = info;
349 
350 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
351 }
352 
353 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
354 {
355 	struct mm_struct *mm = vma->vm_mm;
356 
357 	preempt_disable();
358 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
359 		struct flush_tlb_data fd = {
360 			.vma = vma,
361 			.addr1 = start,
362 			.addr2 = end,
363 		};
364 
365 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
366 	} else {
367 		unsigned int cpu;
368 
369 		for_each_online_cpu(cpu) {
370 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
371 				cpu_context(cpu, mm) = 0;
372 		}
373 	}
374 	local_flush_tlb_range(vma, start, end);
375 	preempt_enable();
376 }
377 
378 static void flush_tlb_kernel_range_ipi(void *info)
379 {
380 	struct flush_tlb_data *fd = info;
381 
382 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
383 }
384 
385 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
386 {
387 	struct flush_tlb_data fd = {
388 		.addr1 = start,
389 		.addr2 = end,
390 	};
391 
392 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
393 }
394 
395 static void flush_tlb_page_ipi(void *info)
396 {
397 	struct flush_tlb_data *fd = info;
398 
399 	local_flush_tlb_page(fd->vma, fd->addr1);
400 }
401 
402 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
403 {
404 	preempt_disable();
405 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
406 		struct flush_tlb_data fd = {
407 			.vma = vma,
408 			.addr1 = page,
409 		};
410 
411 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
412 	} else {
413 		unsigned int cpu;
414 
415 		for_each_online_cpu(cpu) {
416 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
417 				cpu_context(cpu, vma->vm_mm) = 0;
418 		}
419 	}
420 	local_flush_tlb_page(vma, page);
421 	preempt_enable();
422 }
423 
424 static void flush_tlb_one_ipi(void *info)
425 {
426 	unsigned long vaddr = (unsigned long) info;
427 
428 	local_flush_tlb_one(vaddr);
429 }
430 
431 void flush_tlb_one(unsigned long vaddr)
432 {
433 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
434 }
435 
436 EXPORT_SYMBOL(flush_tlb_page);
437 EXPORT_SYMBOL(flush_tlb_one);
438 
439 #if defined(CONFIG_KEXEC)
440 void (*dump_ipi_function_ptr)(void *) = NULL;
441 void dump_send_ipi(void (*dump_ipi_callback)(void *))
442 {
443 	int i;
444 	int cpu = smp_processor_id();
445 
446 	dump_ipi_function_ptr = dump_ipi_callback;
447 	smp_mb();
448 	for_each_online_cpu(i)
449 		if (i != cpu)
450 			mp_ops->send_ipi_single(i, SMP_DUMP);
451 
452 }
453 EXPORT_SYMBOL(dump_send_ipi);
454 #endif
455 
456 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
457 
458 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
459 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
460 
461 void tick_broadcast(const struct cpumask *mask)
462 {
463 	atomic_t *count;
464 	struct call_single_data *csd;
465 	int cpu;
466 
467 	for_each_cpu(cpu, mask) {
468 		count = &per_cpu(tick_broadcast_count, cpu);
469 		csd = &per_cpu(tick_broadcast_csd, cpu);
470 
471 		if (atomic_inc_return(count) == 1)
472 			smp_call_function_single_async(cpu, csd);
473 	}
474 }
475 
476 static void tick_broadcast_callee(void *info)
477 {
478 	int cpu = smp_processor_id();
479 	tick_receive_broadcast();
480 	atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
481 }
482 
483 static int __init tick_broadcast_init(void)
484 {
485 	struct call_single_data *csd;
486 	int cpu;
487 
488 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
489 		csd = &per_cpu(tick_broadcast_csd, cpu);
490 		csd->func = tick_broadcast_callee;
491 	}
492 
493 	return 0;
494 }
495 early_initcall(tick_broadcast_init);
496 
497 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
498