xref: /openbmc/linux/arch/mips/kernel/smp.c (revision a09d2831)
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 
37 #include <asm/atomic.h>
38 #include <asm/cpu.h>
39 #include <asm/processor.h>
40 #include <asm/r4k-timer.h>
41 #include <asm/system.h>
42 #include <asm/mmu_context.h>
43 #include <asm/time.h>
44 
45 #ifdef CONFIG_MIPS_MT_SMTC
46 #include <asm/mipsmtregs.h>
47 #endif /* CONFIG_MIPS_MT_SMTC */
48 
49 volatile cpumask_t cpu_callin_map;	/* Bitmask of started secondaries */
50 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
51 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
52 
53 /* Number of TCs (or siblings in Intel speak) per CPU core */
54 int smp_num_siblings = 1;
55 EXPORT_SYMBOL(smp_num_siblings);
56 
57 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
58 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
59 EXPORT_SYMBOL(cpu_sibling_map);
60 
61 /* representing cpus for which sibling maps can be computed */
62 static cpumask_t cpu_sibling_setup_map;
63 
64 static inline void set_cpu_sibling_map(int cpu)
65 {
66 	int i;
67 
68 	cpu_set(cpu, cpu_sibling_setup_map);
69 
70 	if (smp_num_siblings > 1) {
71 		for_each_cpu_mask(i, cpu_sibling_setup_map) {
72 			if (cpu_data[cpu].core == cpu_data[i].core) {
73 				cpu_set(i, cpu_sibling_map[cpu]);
74 				cpu_set(cpu, cpu_sibling_map[i]);
75 			}
76 		}
77 	} else
78 		cpu_set(cpu, cpu_sibling_map[cpu]);
79 }
80 
81 struct plat_smp_ops *mp_ops;
82 
83 __cpuinit void register_smp_ops(struct plat_smp_ops *ops)
84 {
85 	if (mp_ops)
86 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
87 
88 	mp_ops = ops;
89 }
90 
91 /*
92  * First C code run on the secondary CPUs after being started up by
93  * the master.
94  */
95 asmlinkage __cpuinit void start_secondary(void)
96 {
97 	unsigned int cpu;
98 
99 #ifdef CONFIG_MIPS_MT_SMTC
100 	/* Only do cpu_probe for first TC of CPU */
101 	if ((read_c0_tcbind() & TCBIND_CURTC) == 0)
102 #endif /* CONFIG_MIPS_MT_SMTC */
103 	cpu_probe();
104 	cpu_report();
105 	per_cpu_trap_init();
106 	mips_clockevent_init();
107 	mp_ops->init_secondary();
108 
109 	/*
110 	 * XXX parity protection should be folded in here when it's converted
111 	 * to an option instead of something based on .cputype
112 	 */
113 
114 	calibrate_delay();
115 	preempt_disable();
116 	cpu = smp_processor_id();
117 	cpu_data[cpu].udelay_val = loops_per_jiffy;
118 
119 	notify_cpu_starting(cpu);
120 
121 	mp_ops->smp_finish();
122 	set_cpu_sibling_map(cpu);
123 
124 	cpu_set(cpu, cpu_callin_map);
125 
126 	synchronise_count_slave();
127 
128 	cpu_idle();
129 }
130 
131 /*
132  * Call into both interrupt handlers, as we share the IPI for them
133  */
134 void __irq_entry smp_call_function_interrupt(void)
135 {
136 	irq_enter();
137 	generic_smp_call_function_single_interrupt();
138 	generic_smp_call_function_interrupt();
139 	irq_exit();
140 }
141 
142 static void stop_this_cpu(void *dummy)
143 {
144 	/*
145 	 * Remove this CPU:
146 	 */
147 	cpu_clear(smp_processor_id(), cpu_online_map);
148 	for (;;) {
149 		if (cpu_wait)
150 			(*cpu_wait)();		/* Wait if available. */
151 	}
152 }
153 
154 void smp_send_stop(void)
155 {
156 	smp_call_function(stop_this_cpu, NULL, 0);
157 }
158 
159 void __init smp_cpus_done(unsigned int max_cpus)
160 {
161 	mp_ops->cpus_done();
162 	synchronise_count_master();
163 }
164 
165 /* called from main before smp_init() */
166 void __init smp_prepare_cpus(unsigned int max_cpus)
167 {
168 	init_new_context(current, &init_mm);
169 	current_thread_info()->cpu = 0;
170 	mp_ops->prepare_cpus(max_cpus);
171 	set_cpu_sibling_map(0);
172 #ifndef CONFIG_HOTPLUG_CPU
173 	init_cpu_present(&cpu_possible_map);
174 #endif
175 }
176 
177 /* preload SMP state for boot cpu */
178 void __devinit smp_prepare_boot_cpu(void)
179 {
180 	set_cpu_possible(0, true);
181 	set_cpu_online(0, true);
182 	cpu_set(0, cpu_callin_map);
183 }
184 
185 /*
186  * Called once for each "cpu_possible(cpu)".  Needs to spin up the cpu
187  * and keep control until "cpu_online(cpu)" is set.  Note: cpu is
188  * physical, not logical.
189  */
190 static struct task_struct *cpu_idle_thread[NR_CPUS];
191 
192 int __cpuinit __cpu_up(unsigned int cpu)
193 {
194 	struct task_struct *idle;
195 
196 	/*
197 	 * Processor goes to start_secondary(), sets online flag
198 	 * The following code is purely to make sure
199 	 * Linux can schedule processes on this slave.
200 	 */
201 	if (!cpu_idle_thread[cpu]) {
202 		idle = fork_idle(cpu);
203 		cpu_idle_thread[cpu] = idle;
204 
205 		if (IS_ERR(idle))
206 			panic(KERN_ERR "Fork failed for CPU %d", cpu);
207 	} else {
208 		idle = cpu_idle_thread[cpu];
209 		init_idle(idle, cpu);
210 	}
211 
212 	mp_ops->boot_secondary(cpu, idle);
213 
214 	/*
215 	 * Trust is futile.  We should really have timeouts ...
216 	 */
217 	while (!cpu_isset(cpu, cpu_callin_map))
218 		udelay(100);
219 
220 	cpu_set(cpu, cpu_online_map);
221 
222 	return 0;
223 }
224 
225 /* Not really SMP stuff ... */
226 int setup_profiling_timer(unsigned int multiplier)
227 {
228 	return 0;
229 }
230 
231 static void flush_tlb_all_ipi(void *info)
232 {
233 	local_flush_tlb_all();
234 }
235 
236 void flush_tlb_all(void)
237 {
238 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
239 }
240 
241 static void flush_tlb_mm_ipi(void *mm)
242 {
243 	local_flush_tlb_mm((struct mm_struct *)mm);
244 }
245 
246 /*
247  * Special Variant of smp_call_function for use by TLB functions:
248  *
249  *  o No return value
250  *  o collapses to normal function call on UP kernels
251  *  o collapses to normal function call on systems with a single shared
252  *    primary cache.
253  *  o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core.
254  */
255 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
256 {
257 #ifndef CONFIG_MIPS_MT_SMTC
258 	smp_call_function(func, info, 1);
259 #endif
260 }
261 
262 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
263 {
264 	preempt_disable();
265 
266 	smp_on_other_tlbs(func, info);
267 	func(info);
268 
269 	preempt_enable();
270 }
271 
272 /*
273  * The following tlb flush calls are invoked when old translations are
274  * being torn down, or pte attributes are changing. For single threaded
275  * address spaces, a new context is obtained on the current cpu, and tlb
276  * context on other cpus are invalidated to force a new context allocation
277  * at switch_mm time, should the mm ever be used on other cpus. For
278  * multithreaded address spaces, intercpu interrupts have to be sent.
279  * Another case where intercpu interrupts are required is when the target
280  * mm might be active on another cpu (eg debuggers doing the flushes on
281  * behalf of debugees, kswapd stealing pages from another process etc).
282  * Kanoj 07/00.
283  */
284 
285 void flush_tlb_mm(struct mm_struct *mm)
286 {
287 	preempt_disable();
288 
289 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
290 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
291 	} else {
292 		cpumask_t mask = cpu_online_map;
293 		unsigned int cpu;
294 
295 		cpu_clear(smp_processor_id(), mask);
296 		for_each_cpu_mask(cpu, mask)
297 			if (cpu_context(cpu, mm))
298 				cpu_context(cpu, mm) = 0;
299 	}
300 	local_flush_tlb_mm(mm);
301 
302 	preempt_enable();
303 }
304 
305 struct flush_tlb_data {
306 	struct vm_area_struct *vma;
307 	unsigned long addr1;
308 	unsigned long addr2;
309 };
310 
311 static void flush_tlb_range_ipi(void *info)
312 {
313 	struct flush_tlb_data *fd = info;
314 
315 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
316 }
317 
318 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
319 {
320 	struct mm_struct *mm = vma->vm_mm;
321 
322 	preempt_disable();
323 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
324 		struct flush_tlb_data fd = {
325 			.vma = vma,
326 			.addr1 = start,
327 			.addr2 = end,
328 		};
329 
330 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
331 	} else {
332 		cpumask_t mask = cpu_online_map;
333 		unsigned int cpu;
334 
335 		cpu_clear(smp_processor_id(), mask);
336 		for_each_cpu_mask(cpu, mask)
337 			if (cpu_context(cpu, mm))
338 				cpu_context(cpu, mm) = 0;
339 	}
340 	local_flush_tlb_range(vma, start, end);
341 	preempt_enable();
342 }
343 
344 static void flush_tlb_kernel_range_ipi(void *info)
345 {
346 	struct flush_tlb_data *fd = info;
347 
348 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
349 }
350 
351 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
352 {
353 	struct flush_tlb_data fd = {
354 		.addr1 = start,
355 		.addr2 = end,
356 	};
357 
358 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
359 }
360 
361 static void flush_tlb_page_ipi(void *info)
362 {
363 	struct flush_tlb_data *fd = info;
364 
365 	local_flush_tlb_page(fd->vma, fd->addr1);
366 }
367 
368 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
369 {
370 	preempt_disable();
371 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
372 		struct flush_tlb_data fd = {
373 			.vma = vma,
374 			.addr1 = page,
375 		};
376 
377 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
378 	} else {
379 		cpumask_t mask = cpu_online_map;
380 		unsigned int cpu;
381 
382 		cpu_clear(smp_processor_id(), mask);
383 		for_each_cpu_mask(cpu, mask)
384 			if (cpu_context(cpu, vma->vm_mm))
385 				cpu_context(cpu, vma->vm_mm) = 0;
386 	}
387 	local_flush_tlb_page(vma, page);
388 	preempt_enable();
389 }
390 
391 static void flush_tlb_one_ipi(void *info)
392 {
393 	unsigned long vaddr = (unsigned long) info;
394 
395 	local_flush_tlb_one(vaddr);
396 }
397 
398 void flush_tlb_one(unsigned long vaddr)
399 {
400 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
401 }
402 
403 EXPORT_SYMBOL(flush_tlb_page);
404 EXPORT_SYMBOL(flush_tlb_one);
405