xref: /openbmc/linux/arch/mips/kernel/smp.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/threads.h>
27 #include <linux/module.h>
28 #include <linux/time.h>
29 #include <linux/timex.h>
30 #include <linux/sched.h>
31 #include <linux/cpumask.h>
32 #include <linux/cpu.h>
33 #include <linux/err.h>
34 
35 #include <asm/atomic.h>
36 #include <asm/cpu.h>
37 #include <asm/processor.h>
38 #include <asm/r4k-timer.h>
39 #include <asm/system.h>
40 #include <asm/mmu_context.h>
41 #include <asm/time.h>
42 
43 #ifdef CONFIG_MIPS_MT_SMTC
44 #include <asm/mipsmtregs.h>
45 #endif /* CONFIG_MIPS_MT_SMTC */
46 
47 cpumask_t phys_cpu_present_map;		/* Bitmask of available CPUs */
48 volatile cpumask_t cpu_callin_map;	/* Bitmask of started secondaries */
49 cpumask_t cpu_online_map;		/* Bitmask of currently online CPUs */
50 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
51 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
52 
53 EXPORT_SYMBOL(phys_cpu_present_map);
54 EXPORT_SYMBOL(cpu_online_map);
55 
56 extern void cpu_idle(void);
57 
58 /* Number of TCs (or siblings in Intel speak) per CPU core */
59 int smp_num_siblings = 1;
60 EXPORT_SYMBOL(smp_num_siblings);
61 
62 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
63 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
64 EXPORT_SYMBOL(cpu_sibling_map);
65 
66 /* representing cpus for which sibling maps can be computed */
67 static cpumask_t cpu_sibling_setup_map;
68 
69 static inline void set_cpu_sibling_map(int cpu)
70 {
71 	int i;
72 
73 	cpu_set(cpu, cpu_sibling_setup_map);
74 
75 	if (smp_num_siblings > 1) {
76 		for_each_cpu_mask(i, cpu_sibling_setup_map) {
77 			if (cpu_data[cpu].core == cpu_data[i].core) {
78 				cpu_set(i, cpu_sibling_map[cpu]);
79 				cpu_set(cpu, cpu_sibling_map[i]);
80 			}
81 		}
82 	} else
83 		cpu_set(cpu, cpu_sibling_map[cpu]);
84 }
85 
86 struct plat_smp_ops *mp_ops;
87 
88 __cpuinit void register_smp_ops(struct plat_smp_ops *ops)
89 {
90 	if (mp_ops)
91 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
92 
93 	mp_ops = ops;
94 }
95 
96 /*
97  * First C code run on the secondary CPUs after being started up by
98  * the master.
99  */
100 asmlinkage __cpuinit void start_secondary(void)
101 {
102 	unsigned int cpu;
103 
104 #ifdef CONFIG_MIPS_MT_SMTC
105 	/* Only do cpu_probe for first TC of CPU */
106 	if ((read_c0_tcbind() & TCBIND_CURTC) == 0)
107 #endif /* CONFIG_MIPS_MT_SMTC */
108 	cpu_probe();
109 	cpu_report();
110 	per_cpu_trap_init();
111 	mips_clockevent_init();
112 	mp_ops->init_secondary();
113 
114 	/*
115 	 * XXX parity protection should be folded in here when it's converted
116 	 * to an option instead of something based on .cputype
117 	 */
118 
119 	calibrate_delay();
120 	preempt_disable();
121 	cpu = smp_processor_id();
122 	cpu_data[cpu].udelay_val = loops_per_jiffy;
123 
124 	notify_cpu_starting(cpu);
125 
126 	mp_ops->smp_finish();
127 	set_cpu_sibling_map(cpu);
128 
129 	cpu_set(cpu, cpu_callin_map);
130 
131 	synchronise_count_slave();
132 
133 	cpu_idle();
134 }
135 
136 void arch_send_call_function_ipi(cpumask_t mask)
137 {
138 	mp_ops->send_ipi_mask(mask, SMP_CALL_FUNCTION);
139 }
140 
141 /*
142  * We reuse the same vector for the single IPI
143  */
144 void arch_send_call_function_single_ipi(int cpu)
145 {
146 	mp_ops->send_ipi_mask(cpumask_of_cpu(cpu), SMP_CALL_FUNCTION);
147 }
148 
149 /*
150  * Call into both interrupt handlers, as we share the IPI for them
151  */
152 void smp_call_function_interrupt(void)
153 {
154 	irq_enter();
155 	generic_smp_call_function_single_interrupt();
156 	generic_smp_call_function_interrupt();
157 	irq_exit();
158 }
159 
160 static void stop_this_cpu(void *dummy)
161 {
162 	/*
163 	 * Remove this CPU:
164 	 */
165 	cpu_clear(smp_processor_id(), cpu_online_map);
166 	for (;;) {
167 		if (cpu_wait)
168 			(*cpu_wait)();		/* Wait if available. */
169 	}
170 }
171 
172 void smp_send_stop(void)
173 {
174 	smp_call_function(stop_this_cpu, NULL, 0);
175 }
176 
177 void __init smp_cpus_done(unsigned int max_cpus)
178 {
179 	mp_ops->cpus_done();
180 	synchronise_count_master();
181 }
182 
183 /* called from main before smp_init() */
184 void __init smp_prepare_cpus(unsigned int max_cpus)
185 {
186 	init_new_context(current, &init_mm);
187 	current_thread_info()->cpu = 0;
188 	mp_ops->prepare_cpus(max_cpus);
189 	set_cpu_sibling_map(0);
190 #ifndef CONFIG_HOTPLUG_CPU
191 	cpu_present_map = cpu_possible_map;
192 #endif
193 }
194 
195 /* preload SMP state for boot cpu */
196 void __devinit smp_prepare_boot_cpu(void)
197 {
198 	cpu_set(0, phys_cpu_present_map);
199 	cpu_set(0, cpu_online_map);
200 	cpu_set(0, cpu_callin_map);
201 }
202 
203 /*
204  * Called once for each "cpu_possible(cpu)".  Needs to spin up the cpu
205  * and keep control until "cpu_online(cpu)" is set.  Note: cpu is
206  * physical, not logical.
207  */
208 int __cpuinit __cpu_up(unsigned int cpu)
209 {
210 	struct task_struct *idle;
211 
212 	/*
213 	 * Processor goes to start_secondary(), sets online flag
214 	 * The following code is purely to make sure
215 	 * Linux can schedule processes on this slave.
216 	 */
217 	idle = fork_idle(cpu);
218 	if (IS_ERR(idle))
219 		panic(KERN_ERR "Fork failed for CPU %d", cpu);
220 
221 	mp_ops->boot_secondary(cpu, idle);
222 
223 	/*
224 	 * Trust is futile.  We should really have timeouts ...
225 	 */
226 	while (!cpu_isset(cpu, cpu_callin_map))
227 		udelay(100);
228 
229 	cpu_set(cpu, cpu_online_map);
230 
231 	return 0;
232 }
233 
234 /* Not really SMP stuff ... */
235 int setup_profiling_timer(unsigned int multiplier)
236 {
237 	return 0;
238 }
239 
240 static void flush_tlb_all_ipi(void *info)
241 {
242 	local_flush_tlb_all();
243 }
244 
245 void flush_tlb_all(void)
246 {
247 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
248 }
249 
250 static void flush_tlb_mm_ipi(void *mm)
251 {
252 	local_flush_tlb_mm((struct mm_struct *)mm);
253 }
254 
255 /*
256  * Special Variant of smp_call_function for use by TLB functions:
257  *
258  *  o No return value
259  *  o collapses to normal function call on UP kernels
260  *  o collapses to normal function call on systems with a single shared
261  *    primary cache.
262  *  o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core.
263  */
264 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
265 {
266 #ifndef CONFIG_MIPS_MT_SMTC
267 	smp_call_function(func, info, 1);
268 #endif
269 }
270 
271 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
272 {
273 	preempt_disable();
274 
275 	smp_on_other_tlbs(func, info);
276 	func(info);
277 
278 	preempt_enable();
279 }
280 
281 /*
282  * The following tlb flush calls are invoked when old translations are
283  * being torn down, or pte attributes are changing. For single threaded
284  * address spaces, a new context is obtained on the current cpu, and tlb
285  * context on other cpus are invalidated to force a new context allocation
286  * at switch_mm time, should the mm ever be used on other cpus. For
287  * multithreaded address spaces, intercpu interrupts have to be sent.
288  * Another case where intercpu interrupts are required is when the target
289  * mm might be active on another cpu (eg debuggers doing the flushes on
290  * behalf of debugees, kswapd stealing pages from another process etc).
291  * Kanoj 07/00.
292  */
293 
294 void flush_tlb_mm(struct mm_struct *mm)
295 {
296 	preempt_disable();
297 
298 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
299 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
300 	} else {
301 		cpumask_t mask = cpu_online_map;
302 		unsigned int cpu;
303 
304 		cpu_clear(smp_processor_id(), mask);
305 		for_each_cpu_mask(cpu, mask)
306 			if (cpu_context(cpu, mm))
307 				cpu_context(cpu, mm) = 0;
308 	}
309 	local_flush_tlb_mm(mm);
310 
311 	preempt_enable();
312 }
313 
314 struct flush_tlb_data {
315 	struct vm_area_struct *vma;
316 	unsigned long addr1;
317 	unsigned long addr2;
318 };
319 
320 static void flush_tlb_range_ipi(void *info)
321 {
322 	struct flush_tlb_data *fd = info;
323 
324 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
325 }
326 
327 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
328 {
329 	struct mm_struct *mm = vma->vm_mm;
330 
331 	preempt_disable();
332 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
333 		struct flush_tlb_data fd = {
334 			.vma = vma,
335 			.addr1 = start,
336 			.addr2 = end,
337 		};
338 
339 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
340 	} else {
341 		cpumask_t mask = cpu_online_map;
342 		unsigned int cpu;
343 
344 		cpu_clear(smp_processor_id(), mask);
345 		for_each_cpu_mask(cpu, mask)
346 			if (cpu_context(cpu, mm))
347 				cpu_context(cpu, mm) = 0;
348 	}
349 	local_flush_tlb_range(vma, start, end);
350 	preempt_enable();
351 }
352 
353 static void flush_tlb_kernel_range_ipi(void *info)
354 {
355 	struct flush_tlb_data *fd = info;
356 
357 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
358 }
359 
360 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
361 {
362 	struct flush_tlb_data fd = {
363 		.addr1 = start,
364 		.addr2 = end,
365 	};
366 
367 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
368 }
369 
370 static void flush_tlb_page_ipi(void *info)
371 {
372 	struct flush_tlb_data *fd = info;
373 
374 	local_flush_tlb_page(fd->vma, fd->addr1);
375 }
376 
377 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
378 {
379 	preempt_disable();
380 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
381 		struct flush_tlb_data fd = {
382 			.vma = vma,
383 			.addr1 = page,
384 		};
385 
386 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
387 	} else {
388 		cpumask_t mask = cpu_online_map;
389 		unsigned int cpu;
390 
391 		cpu_clear(smp_processor_id(), mask);
392 		for_each_cpu_mask(cpu, mask)
393 			if (cpu_context(cpu, vma->vm_mm))
394 				cpu_context(cpu, vma->vm_mm) = 0;
395 	}
396 	local_flush_tlb_page(vma, page);
397 	preempt_enable();
398 }
399 
400 static void flush_tlb_one_ipi(void *info)
401 {
402 	unsigned long vaddr = (unsigned long) info;
403 
404 	local_flush_tlb_one(vaddr);
405 }
406 
407 void flush_tlb_one(unsigned long vaddr)
408 {
409 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
410 }
411 
412 EXPORT_SYMBOL(flush_tlb_page);
413 EXPORT_SYMBOL(flush_tlb_one);
414