1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Copyright (C) 2000, 2001 Kanoj Sarcar 5 * Copyright (C) 2000, 2001 Ralf Baechle 6 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 7 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 8 */ 9 #include <linux/cache.h> 10 #include <linux/delay.h> 11 #include <linux/init.h> 12 #include <linux/interrupt.h> 13 #include <linux/smp.h> 14 #include <linux/spinlock.h> 15 #include <linux/threads.h> 16 #include <linux/export.h> 17 #include <linux/time.h> 18 #include <linux/timex.h> 19 #include <linux/sched/mm.h> 20 #include <linux/cpumask.h> 21 #include <linux/cpu.h> 22 #include <linux/err.h> 23 #include <linux/ftrace.h> 24 #include <linux/irqdomain.h> 25 #include <linux/of.h> 26 #include <linux/of_irq.h> 27 28 #include <linux/atomic.h> 29 #include <asm/cpu.h> 30 #include <asm/ginvt.h> 31 #include <asm/processor.h> 32 #include <asm/idle.h> 33 #include <asm/r4k-timer.h> 34 #include <asm/mips-cps.h> 35 #include <asm/mmu_context.h> 36 #include <asm/time.h> 37 #include <asm/setup.h> 38 #include <asm/maar.h> 39 40 int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP]; /* Map physical to logical */ 41 EXPORT_SYMBOL(__cpu_number_map); 42 43 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 44 EXPORT_SYMBOL(__cpu_logical_map); 45 46 /* Number of TCs (or siblings in Intel speak) per CPU core */ 47 int smp_num_siblings = 1; 48 EXPORT_SYMBOL(smp_num_siblings); 49 50 /* representing the TCs (or siblings in Intel speak) of each logical CPU */ 51 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 52 EXPORT_SYMBOL(cpu_sibling_map); 53 54 /* representing the core map of multi-core chips of each logical CPU */ 55 cpumask_t cpu_core_map[NR_CPUS] __read_mostly; 56 EXPORT_SYMBOL(cpu_core_map); 57 58 static DECLARE_COMPLETION(cpu_starting); 59 static DECLARE_COMPLETION(cpu_running); 60 61 /* 62 * A logical cpu mask containing only one VPE per core to 63 * reduce the number of IPIs on large MT systems. 64 */ 65 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly; 66 EXPORT_SYMBOL(cpu_foreign_map); 67 68 /* representing cpus for which sibling maps can be computed */ 69 static cpumask_t cpu_sibling_setup_map; 70 71 /* representing cpus for which core maps can be computed */ 72 static cpumask_t cpu_core_setup_map; 73 74 cpumask_t cpu_coherent_mask; 75 76 unsigned int smp_max_threads __initdata = UINT_MAX; 77 78 static int __init early_nosmt(char *s) 79 { 80 smp_max_threads = 1; 81 return 0; 82 } 83 early_param("nosmt", early_nosmt); 84 85 static int __init early_smt(char *s) 86 { 87 get_option(&s, &smp_max_threads); 88 /* Ensure at least one thread is available */ 89 smp_max_threads = clamp_val(smp_max_threads, 1U, UINT_MAX); 90 return 0; 91 } 92 early_param("smt", early_smt); 93 94 #ifdef CONFIG_GENERIC_IRQ_IPI 95 static struct irq_desc *call_desc; 96 static struct irq_desc *sched_desc; 97 #endif 98 99 static inline void set_cpu_sibling_map(int cpu) 100 { 101 int i; 102 103 cpumask_set_cpu(cpu, &cpu_sibling_setup_map); 104 105 if (smp_num_siblings > 1) { 106 for_each_cpu(i, &cpu_sibling_setup_map) { 107 if (cpus_are_siblings(cpu, i)) { 108 cpumask_set_cpu(i, &cpu_sibling_map[cpu]); 109 cpumask_set_cpu(cpu, &cpu_sibling_map[i]); 110 } 111 } 112 } else 113 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]); 114 } 115 116 static inline void set_cpu_core_map(int cpu) 117 { 118 int i; 119 120 cpumask_set_cpu(cpu, &cpu_core_setup_map); 121 122 for_each_cpu(i, &cpu_core_setup_map) { 123 if (cpu_data[cpu].package == cpu_data[i].package) { 124 cpumask_set_cpu(i, &cpu_core_map[cpu]); 125 cpumask_set_cpu(cpu, &cpu_core_map[i]); 126 } 127 } 128 } 129 130 /* 131 * Calculate a new cpu_foreign_map mask whenever a 132 * new cpu appears or disappears. 133 */ 134 void calculate_cpu_foreign_map(void) 135 { 136 int i, k, core_present; 137 cpumask_t temp_foreign_map; 138 139 /* Re-calculate the mask */ 140 cpumask_clear(&temp_foreign_map); 141 for_each_online_cpu(i) { 142 core_present = 0; 143 for_each_cpu(k, &temp_foreign_map) 144 if (cpus_are_siblings(i, k)) 145 core_present = 1; 146 if (!core_present) 147 cpumask_set_cpu(i, &temp_foreign_map); 148 } 149 150 for_each_online_cpu(i) 151 cpumask_andnot(&cpu_foreign_map[i], 152 &temp_foreign_map, &cpu_sibling_map[i]); 153 } 154 155 const struct plat_smp_ops *mp_ops; 156 EXPORT_SYMBOL(mp_ops); 157 158 void register_smp_ops(const struct plat_smp_ops *ops) 159 { 160 if (mp_ops) 161 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 162 163 mp_ops = ops; 164 } 165 166 #ifdef CONFIG_GENERIC_IRQ_IPI 167 void mips_smp_send_ipi_single(int cpu, unsigned int action) 168 { 169 mips_smp_send_ipi_mask(cpumask_of(cpu), action); 170 } 171 172 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action) 173 { 174 unsigned long flags; 175 unsigned int core; 176 int cpu; 177 178 local_irq_save(flags); 179 180 switch (action) { 181 case SMP_CALL_FUNCTION: 182 __ipi_send_mask(call_desc, mask); 183 break; 184 185 case SMP_RESCHEDULE_YOURSELF: 186 __ipi_send_mask(sched_desc, mask); 187 break; 188 189 default: 190 BUG(); 191 } 192 193 if (mips_cpc_present()) { 194 for_each_cpu(cpu, mask) { 195 if (cpus_are_siblings(cpu, smp_processor_id())) 196 continue; 197 198 core = cpu_core(&cpu_data[cpu]); 199 200 while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) { 201 mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL); 202 mips_cpc_lock_other(core); 203 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP); 204 mips_cpc_unlock_other(); 205 mips_cm_unlock_other(); 206 } 207 } 208 } 209 210 local_irq_restore(flags); 211 } 212 213 214 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id) 215 { 216 scheduler_ipi(); 217 218 return IRQ_HANDLED; 219 } 220 221 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id) 222 { 223 generic_smp_call_function_interrupt(); 224 225 return IRQ_HANDLED; 226 } 227 228 static void smp_ipi_init_one(unsigned int virq, const char *name, 229 irq_handler_t handler) 230 { 231 int ret; 232 233 irq_set_handler(virq, handle_percpu_irq); 234 ret = request_irq(virq, handler, IRQF_PERCPU, name, NULL); 235 BUG_ON(ret); 236 } 237 238 static unsigned int call_virq, sched_virq; 239 240 int mips_smp_ipi_allocate(const struct cpumask *mask) 241 { 242 int virq; 243 struct irq_domain *ipidomain; 244 struct device_node *node; 245 246 node = of_irq_find_parent(of_root); 247 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); 248 249 /* 250 * Some platforms have half DT setup. So if we found irq node but 251 * didn't find an ipidomain, try to search for one that is not in the 252 * DT. 253 */ 254 if (node && !ipidomain) 255 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); 256 257 /* 258 * There are systems which use IPI IRQ domains, but only have one 259 * registered when some runtime condition is met. For example a Malta 260 * kernel may include support for GIC & CPU interrupt controller IPI 261 * IRQ domains, but if run on a system with no GIC & no MT ASE then 262 * neither will be supported or registered. 263 * 264 * We only have a problem if we're actually using multiple CPUs so fail 265 * loudly if that is the case. Otherwise simply return, skipping IPI 266 * setup, if we're running with only a single CPU. 267 */ 268 if (!ipidomain) { 269 BUG_ON(num_present_cpus() > 1); 270 return 0; 271 } 272 273 virq = irq_reserve_ipi(ipidomain, mask); 274 BUG_ON(!virq); 275 if (!call_virq) 276 call_virq = virq; 277 278 virq = irq_reserve_ipi(ipidomain, mask); 279 BUG_ON(!virq); 280 if (!sched_virq) 281 sched_virq = virq; 282 283 if (irq_domain_is_ipi_per_cpu(ipidomain)) { 284 int cpu; 285 286 for_each_cpu(cpu, mask) { 287 smp_ipi_init_one(call_virq + cpu, "IPI call", 288 ipi_call_interrupt); 289 smp_ipi_init_one(sched_virq + cpu, "IPI resched", 290 ipi_resched_interrupt); 291 } 292 } else { 293 smp_ipi_init_one(call_virq, "IPI call", ipi_call_interrupt); 294 smp_ipi_init_one(sched_virq, "IPI resched", 295 ipi_resched_interrupt); 296 } 297 298 return 0; 299 } 300 301 int mips_smp_ipi_free(const struct cpumask *mask) 302 { 303 struct irq_domain *ipidomain; 304 struct device_node *node; 305 306 node = of_irq_find_parent(of_root); 307 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); 308 309 /* 310 * Some platforms have half DT setup. So if we found irq node but 311 * didn't find an ipidomain, try to search for one that is not in the 312 * DT. 313 */ 314 if (node && !ipidomain) 315 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); 316 317 BUG_ON(!ipidomain); 318 319 if (irq_domain_is_ipi_per_cpu(ipidomain)) { 320 int cpu; 321 322 for_each_cpu(cpu, mask) { 323 free_irq(call_virq + cpu, NULL); 324 free_irq(sched_virq + cpu, NULL); 325 } 326 } 327 irq_destroy_ipi(call_virq, mask); 328 irq_destroy_ipi(sched_virq, mask); 329 return 0; 330 } 331 332 333 static int __init mips_smp_ipi_init(void) 334 { 335 if (num_possible_cpus() == 1) 336 return 0; 337 338 mips_smp_ipi_allocate(cpu_possible_mask); 339 340 call_desc = irq_to_desc(call_virq); 341 sched_desc = irq_to_desc(sched_virq); 342 343 return 0; 344 } 345 early_initcall(mips_smp_ipi_init); 346 #endif 347 348 /* 349 * First C code run on the secondary CPUs after being started up by 350 * the master. 351 */ 352 asmlinkage void start_secondary(void) 353 { 354 unsigned int cpu = raw_smp_processor_id(); 355 356 cpu_probe(); 357 per_cpu_trap_init(false); 358 rcu_cpu_starting(cpu); 359 mips_clockevent_init(); 360 mp_ops->init_secondary(); 361 cpu_report(); 362 maar_init(); 363 364 /* 365 * XXX parity protection should be folded in here when it's converted 366 * to an option instead of something based on .cputype 367 */ 368 369 calibrate_delay(); 370 cpu_data[cpu].udelay_val = loops_per_jiffy; 371 372 set_cpu_sibling_map(cpu); 373 set_cpu_core_map(cpu); 374 375 cpumask_set_cpu(cpu, &cpu_coherent_mask); 376 notify_cpu_starting(cpu); 377 378 /* Notify boot CPU that we're starting & ready to sync counters */ 379 complete(&cpu_starting); 380 381 synchronise_count_slave(cpu); 382 383 /* The CPU is running and counters synchronised, now mark it online */ 384 set_cpu_online(cpu, true); 385 386 calculate_cpu_foreign_map(); 387 388 /* 389 * Notify boot CPU that we're up & online and it can safely return 390 * from __cpu_up 391 */ 392 complete(&cpu_running); 393 394 /* 395 * irq will be enabled in ->smp_finish(), enabling it too early 396 * is dangerous. 397 */ 398 WARN_ON_ONCE(!irqs_disabled()); 399 mp_ops->smp_finish(); 400 401 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 402 } 403 404 static void stop_this_cpu(void *dummy) 405 { 406 /* 407 * Remove this CPU: 408 */ 409 410 set_cpu_online(smp_processor_id(), false); 411 calculate_cpu_foreign_map(); 412 local_irq_disable(); 413 while (1); 414 } 415 416 void smp_send_stop(void) 417 { 418 smp_call_function(stop_this_cpu, NULL, 0); 419 } 420 421 void __init smp_cpus_done(unsigned int max_cpus) 422 { 423 } 424 425 /* called from main before smp_init() */ 426 void __init smp_prepare_cpus(unsigned int max_cpus) 427 { 428 init_new_context(current, &init_mm); 429 current_thread_info()->cpu = 0; 430 mp_ops->prepare_cpus(max_cpus); 431 set_cpu_sibling_map(0); 432 set_cpu_core_map(0); 433 calculate_cpu_foreign_map(); 434 #ifndef CONFIG_HOTPLUG_CPU 435 init_cpu_present(cpu_possible_mask); 436 #endif 437 cpumask_copy(&cpu_coherent_mask, cpu_possible_mask); 438 } 439 440 /* preload SMP state for boot cpu */ 441 void smp_prepare_boot_cpu(void) 442 { 443 if (mp_ops->prepare_boot_cpu) 444 mp_ops->prepare_boot_cpu(); 445 set_cpu_possible(0, true); 446 set_cpu_online(0, true); 447 } 448 449 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 450 { 451 int err; 452 453 err = mp_ops->boot_secondary(cpu, tidle); 454 if (err) 455 return err; 456 457 /* Wait for CPU to start and be ready to sync counters */ 458 if (!wait_for_completion_timeout(&cpu_starting, 459 msecs_to_jiffies(1000))) { 460 pr_crit("CPU%u: failed to start\n", cpu); 461 return -EIO; 462 } 463 464 synchronise_count_master(cpu); 465 466 /* Wait for CPU to finish startup & mark itself online before return */ 467 wait_for_completion(&cpu_running); 468 return 0; 469 } 470 471 /* Not really SMP stuff ... */ 472 int setup_profiling_timer(unsigned int multiplier) 473 { 474 return 0; 475 } 476 477 static void flush_tlb_all_ipi(void *info) 478 { 479 local_flush_tlb_all(); 480 } 481 482 void flush_tlb_all(void) 483 { 484 if (cpu_has_mmid) { 485 htw_stop(); 486 ginvt_full(); 487 sync_ginv(); 488 instruction_hazard(); 489 htw_start(); 490 return; 491 } 492 493 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 494 } 495 496 static void flush_tlb_mm_ipi(void *mm) 497 { 498 drop_mmu_context((struct mm_struct *)mm); 499 } 500 501 /* 502 * Special Variant of smp_call_function for use by TLB functions: 503 * 504 * o No return value 505 * o collapses to normal function call on UP kernels 506 * o collapses to normal function call on systems with a single shared 507 * primary cache. 508 */ 509 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) 510 { 511 smp_call_function(func, info, 1); 512 } 513 514 static inline void smp_on_each_tlb(void (*func) (void *info), void *info) 515 { 516 preempt_disable(); 517 518 smp_on_other_tlbs(func, info); 519 func(info); 520 521 preempt_enable(); 522 } 523 524 /* 525 * The following tlb flush calls are invoked when old translations are 526 * being torn down, or pte attributes are changing. For single threaded 527 * address spaces, a new context is obtained on the current cpu, and tlb 528 * context on other cpus are invalidated to force a new context allocation 529 * at switch_mm time, should the mm ever be used on other cpus. For 530 * multithreaded address spaces, inter-CPU interrupts have to be sent. 531 * Another case where inter-CPU interrupts are required is when the target 532 * mm might be active on another cpu (eg debuggers doing the flushes on 533 * behalf of debugees, kswapd stealing pages from another process etc). 534 * Kanoj 07/00. 535 */ 536 537 void flush_tlb_mm(struct mm_struct *mm) 538 { 539 if (!mm) 540 return; 541 542 if (atomic_read(&mm->mm_users) == 0) 543 return; /* happens as a result of exit_mmap() */ 544 545 preempt_disable(); 546 547 if (cpu_has_mmid) { 548 /* 549 * No need to worry about other CPUs - the ginvt in 550 * drop_mmu_context() will be globalized. 551 */ 552 } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 553 smp_on_other_tlbs(flush_tlb_mm_ipi, mm); 554 } else { 555 unsigned int cpu; 556 557 for_each_online_cpu(cpu) { 558 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 559 set_cpu_context(cpu, mm, 0); 560 } 561 } 562 drop_mmu_context(mm); 563 564 preempt_enable(); 565 } 566 567 struct flush_tlb_data { 568 struct vm_area_struct *vma; 569 unsigned long addr1; 570 unsigned long addr2; 571 }; 572 573 static void flush_tlb_range_ipi(void *info) 574 { 575 struct flush_tlb_data *fd = info; 576 577 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 578 } 579 580 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 581 { 582 struct mm_struct *mm = vma->vm_mm; 583 unsigned long addr; 584 u32 old_mmid; 585 586 preempt_disable(); 587 if (cpu_has_mmid) { 588 htw_stop(); 589 old_mmid = read_c0_memorymapid(); 590 write_c0_memorymapid(cpu_asid(0, mm)); 591 mtc0_tlbw_hazard(); 592 addr = round_down(start, PAGE_SIZE * 2); 593 end = round_up(end, PAGE_SIZE * 2); 594 do { 595 ginvt_va_mmid(addr); 596 sync_ginv(); 597 addr += PAGE_SIZE * 2; 598 } while (addr < end); 599 write_c0_memorymapid(old_mmid); 600 instruction_hazard(); 601 htw_start(); 602 } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 603 struct flush_tlb_data fd = { 604 .vma = vma, 605 .addr1 = start, 606 .addr2 = end, 607 }; 608 609 smp_on_other_tlbs(flush_tlb_range_ipi, &fd); 610 local_flush_tlb_range(vma, start, end); 611 } else { 612 unsigned int cpu; 613 int exec = vma->vm_flags & VM_EXEC; 614 615 for_each_online_cpu(cpu) { 616 /* 617 * flush_cache_range() will only fully flush icache if 618 * the VMA is executable, otherwise we must invalidate 619 * ASID without it appearing to has_valid_asid() as if 620 * mm has been completely unused by that CPU. 621 */ 622 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 623 set_cpu_context(cpu, mm, !exec); 624 } 625 local_flush_tlb_range(vma, start, end); 626 } 627 preempt_enable(); 628 } 629 630 static void flush_tlb_kernel_range_ipi(void *info) 631 { 632 struct flush_tlb_data *fd = info; 633 634 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 635 } 636 637 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 638 { 639 struct flush_tlb_data fd = { 640 .addr1 = start, 641 .addr2 = end, 642 }; 643 644 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 645 } 646 647 static void flush_tlb_page_ipi(void *info) 648 { 649 struct flush_tlb_data *fd = info; 650 651 local_flush_tlb_page(fd->vma, fd->addr1); 652 } 653 654 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 655 { 656 u32 old_mmid; 657 658 preempt_disable(); 659 if (cpu_has_mmid) { 660 htw_stop(); 661 old_mmid = read_c0_memorymapid(); 662 write_c0_memorymapid(cpu_asid(0, vma->vm_mm)); 663 mtc0_tlbw_hazard(); 664 ginvt_va_mmid(page); 665 sync_ginv(); 666 write_c0_memorymapid(old_mmid); 667 instruction_hazard(); 668 htw_start(); 669 } else if ((atomic_read(&vma->vm_mm->mm_users) != 1) || 670 (current->mm != vma->vm_mm)) { 671 struct flush_tlb_data fd = { 672 .vma = vma, 673 .addr1 = page, 674 }; 675 676 smp_on_other_tlbs(flush_tlb_page_ipi, &fd); 677 local_flush_tlb_page(vma, page); 678 } else { 679 unsigned int cpu; 680 681 for_each_online_cpu(cpu) { 682 /* 683 * flush_cache_page() only does partial flushes, so 684 * invalidate ASID without it appearing to 685 * has_valid_asid() as if mm has been completely unused 686 * by that CPU. 687 */ 688 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) 689 set_cpu_context(cpu, vma->vm_mm, 1); 690 } 691 local_flush_tlb_page(vma, page); 692 } 693 preempt_enable(); 694 } 695 696 static void flush_tlb_one_ipi(void *info) 697 { 698 unsigned long vaddr = (unsigned long) info; 699 700 local_flush_tlb_one(vaddr); 701 } 702 703 void flush_tlb_one(unsigned long vaddr) 704 { 705 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); 706 } 707 708 EXPORT_SYMBOL(flush_tlb_page); 709 EXPORT_SYMBOL(flush_tlb_one); 710 711 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD 712 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) 713 { 714 if (mp_ops->cleanup_dead_cpu) 715 mp_ops->cleanup_dead_cpu(cpu); 716 } 717 #endif 718 719 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 720 721 static void tick_broadcast_callee(void *info) 722 { 723 tick_receive_broadcast(); 724 } 725 726 static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd) = 727 CSD_INIT(tick_broadcast_callee, NULL); 728 729 void tick_broadcast(const struct cpumask *mask) 730 { 731 call_single_data_t *csd; 732 int cpu; 733 734 for_each_cpu(cpu, mask) { 735 csd = &per_cpu(tick_broadcast_csd, cpu); 736 smp_call_function_single_async(cpu, csd); 737 } 738 } 739 740 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */ 741