xref: /openbmc/linux/arch/mips/kernel/smp.c (revision 87c2ce3b)
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/threads.h>
27 #include <linux/module.h>
28 #include <linux/time.h>
29 #include <linux/timex.h>
30 #include <linux/sched.h>
31 #include <linux/cpumask.h>
32 
33 #include <asm/atomic.h>
34 #include <asm/cpu.h>
35 #include <asm/processor.h>
36 #include <asm/system.h>
37 #include <asm/mmu_context.h>
38 #include <asm/smp.h>
39 
40 cpumask_t phys_cpu_present_map;		/* Bitmask of available CPUs */
41 volatile cpumask_t cpu_callin_map;	/* Bitmask of started secondaries */
42 cpumask_t cpu_online_map;		/* Bitmask of currently online CPUs */
43 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
44 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
45 
46 EXPORT_SYMBOL(phys_cpu_present_map);
47 EXPORT_SYMBOL(cpu_online_map);
48 
49 static void smp_tune_scheduling (void)
50 {
51 	struct cache_desc *cd = &current_cpu_data.scache;
52 	unsigned long cachesize;       /* kB   */
53 	unsigned long cpu_khz;
54 
55 	/*
56 	 * Crude estimate until we actually meassure ...
57 	 */
58 	cpu_khz = loops_per_jiffy * 2 * HZ / 1000;
59 
60 	/*
61 	 * Rough estimation for SMP scheduling, this is the number of
62 	 * cycles it takes for a fully memory-limited process to flush
63 	 * the SMP-local cache.
64 	 *
65 	 * (For a P5 this pretty much means we will choose another idle
66 	 *  CPU almost always at wakeup time (this is due to the small
67 	 *  L1 cache), on PIIs it's around 50-100 usecs, depending on
68 	 *  the cache size)
69 	 */
70 	if (!cpu_khz)
71 		return;
72 
73 	cachesize = cd->linesz * cd->sets * cd->ways;
74 }
75 
76 extern void __init calibrate_delay(void);
77 extern ATTRIB_NORET void cpu_idle(void);
78 
79 /*
80  * First C code run on the secondary CPUs after being started up by
81  * the master.
82  */
83 asmlinkage void start_secondary(void)
84 {
85 	unsigned int cpu;
86 
87 	cpu_probe();
88 	cpu_report();
89 	per_cpu_trap_init();
90 	prom_init_secondary();
91 
92 	/*
93 	 * XXX parity protection should be folded in here when it's converted
94 	 * to an option instead of something based on .cputype
95 	 */
96 
97 	calibrate_delay();
98 	preempt_disable();
99 	cpu = smp_processor_id();
100 	cpu_data[cpu].udelay_val = loops_per_jiffy;
101 
102 	prom_smp_finish();
103 
104 	cpu_set(cpu, cpu_callin_map);
105 
106 	cpu_idle();
107 }
108 
109 DEFINE_SPINLOCK(smp_call_lock);
110 
111 struct call_data_struct *call_data;
112 
113 /*
114  * Run a function on all other CPUs.
115  *  <func>      The function to run. This must be fast and non-blocking.
116  *  <info>      An arbitrary pointer to pass to the function.
117  *  <retry>     If true, keep retrying until ready.
118  *  <wait>      If true, wait until function has completed on other CPUs.
119  *  [RETURNS]   0 on success, else a negative status code.
120  *
121  * Does not return until remote CPUs are nearly ready to execute <func>
122  * or are or have executed.
123  *
124  * You must not call this function with disabled interrupts or from a
125  * hardware interrupt handler or from a bottom half handler:
126  *
127  * CPU A                               CPU B
128  * Disable interrupts
129  *                                     smp_call_function()
130  *                                     Take call_lock
131  *                                     Send IPIs
132  *                                     Wait for all cpus to acknowledge IPI
133  *                                     CPU A has not responded, spin waiting
134  *                                     for cpu A to respond, holding call_lock
135  * smp_call_function()
136  * Spin waiting for call_lock
137  * Deadlock                            Deadlock
138  */
139 int smp_call_function (void (*func) (void *info), void *info, int retry,
140 								int wait)
141 {
142 	struct call_data_struct data;
143 	int i, cpus = num_online_cpus() - 1;
144 	int cpu = smp_processor_id();
145 
146 	/*
147 	 * Can die spectacularly if this CPU isn't yet marked online
148 	 */
149 	BUG_ON(!cpu_online(cpu));
150 
151 	if (!cpus)
152 		return 0;
153 
154 	/* Can deadlock when called with interrupts disabled */
155 	WARN_ON(irqs_disabled());
156 
157 	data.func = func;
158 	data.info = info;
159 	atomic_set(&data.started, 0);
160 	data.wait = wait;
161 	if (wait)
162 		atomic_set(&data.finished, 0);
163 
164 	spin_lock(&smp_call_lock);
165 	call_data = &data;
166 	mb();
167 
168 	/* Send a message to all other CPUs and wait for them to respond */
169 	for (i = 0; i < NR_CPUS; i++)
170 		if (cpu_online(i) && i != cpu)
171 			core_send_ipi(i, SMP_CALL_FUNCTION);
172 
173 	/* Wait for response */
174 	/* FIXME: lock-up detection, backtrace on lock-up */
175 	while (atomic_read(&data.started) != cpus)
176 		barrier();
177 
178 	if (wait)
179 		while (atomic_read(&data.finished) != cpus)
180 			barrier();
181 	spin_unlock(&smp_call_lock);
182 
183 	return 0;
184 }
185 
186 void smp_call_function_interrupt(void)
187 {
188 	void (*func) (void *info) = call_data->func;
189 	void *info = call_data->info;
190 	int wait = call_data->wait;
191 
192 	/*
193 	 * Notify initiating CPU that I've grabbed the data and am
194 	 * about to execute the function.
195 	 */
196 	mb();
197 	atomic_inc(&call_data->started);
198 
199 	/*
200 	 * At this point the info structure may be out of scope unless wait==1.
201 	 */
202 	irq_enter();
203 	(*func)(info);
204 	irq_exit();
205 
206 	if (wait) {
207 		mb();
208 		atomic_inc(&call_data->finished);
209 	}
210 }
211 
212 static void stop_this_cpu(void *dummy)
213 {
214 	/*
215 	 * Remove this CPU:
216 	 */
217 	cpu_clear(smp_processor_id(), cpu_online_map);
218 	local_irq_enable();	/* May need to service _machine_restart IPI */
219 	for (;;);		/* Wait if available. */
220 }
221 
222 void smp_send_stop(void)
223 {
224 	smp_call_function(stop_this_cpu, NULL, 1, 0);
225 }
226 
227 void __init smp_cpus_done(unsigned int max_cpus)
228 {
229 	prom_cpus_done();
230 }
231 
232 /* called from main before smp_init() */
233 void __init smp_prepare_cpus(unsigned int max_cpus)
234 {
235 	init_new_context(current, &init_mm);
236 	current_thread_info()->cpu = 0;
237 	smp_tune_scheduling();
238 	prom_prepare_cpus(max_cpus);
239 }
240 
241 /* preload SMP state for boot cpu */
242 void __devinit smp_prepare_boot_cpu(void)
243 {
244 	/*
245 	 * This assumes that bootup is always handled by the processor
246 	 * with the logic and physical number 0.
247 	 */
248 	__cpu_number_map[0] = 0;
249 	__cpu_logical_map[0] = 0;
250 	cpu_set(0, phys_cpu_present_map);
251 	cpu_set(0, cpu_online_map);
252 	cpu_set(0, cpu_callin_map);
253 }
254 
255 /*
256  * Called once for each "cpu_possible(cpu)".  Needs to spin up the cpu
257  * and keep control until "cpu_online(cpu)" is set.  Note: cpu is
258  * physical, not logical.
259  */
260 int __devinit __cpu_up(unsigned int cpu)
261 {
262 	struct task_struct *idle;
263 
264 	/*
265 	 * Processor goes to start_secondary(), sets online flag
266 	 * The following code is purely to make sure
267 	 * Linux can schedule processes on this slave.
268 	 */
269 	idle = fork_idle(cpu);
270 	if (IS_ERR(idle))
271 		panic(KERN_ERR "Fork failed for CPU %d", cpu);
272 
273 	prom_boot_secondary(cpu, idle);
274 
275 	/*
276 	 * Trust is futile.  We should really have timeouts ...
277 	 */
278 	while (!cpu_isset(cpu, cpu_callin_map))
279 		udelay(100);
280 
281 	cpu_set(cpu, cpu_online_map);
282 
283 	return 0;
284 }
285 
286 /* Not really SMP stuff ... */
287 int setup_profiling_timer(unsigned int multiplier)
288 {
289 	return 0;
290 }
291 
292 static void flush_tlb_all_ipi(void *info)
293 {
294 	local_flush_tlb_all();
295 }
296 
297 void flush_tlb_all(void)
298 {
299 	on_each_cpu(flush_tlb_all_ipi, 0, 1, 1);
300 }
301 
302 static void flush_tlb_mm_ipi(void *mm)
303 {
304 	local_flush_tlb_mm((struct mm_struct *)mm);
305 }
306 
307 /*
308  * The following tlb flush calls are invoked when old translations are
309  * being torn down, or pte attributes are changing. For single threaded
310  * address spaces, a new context is obtained on the current cpu, and tlb
311  * context on other cpus are invalidated to force a new context allocation
312  * at switch_mm time, should the mm ever be used on other cpus. For
313  * multithreaded address spaces, intercpu interrupts have to be sent.
314  * Another case where intercpu interrupts are required is when the target
315  * mm might be active on another cpu (eg debuggers doing the flushes on
316  * behalf of debugees, kswapd stealing pages from another process etc).
317  * Kanoj 07/00.
318  */
319 
320 void flush_tlb_mm(struct mm_struct *mm)
321 {
322 	preempt_disable();
323 
324 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
325 		smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1, 1);
326 	} else {
327 		int i;
328 		for (i = 0; i < num_online_cpus(); i++)
329 			if (smp_processor_id() != i)
330 				cpu_context(i, mm) = 0;
331 	}
332 	local_flush_tlb_mm(mm);
333 
334 	preempt_enable();
335 }
336 
337 struct flush_tlb_data {
338 	struct vm_area_struct *vma;
339 	unsigned long addr1;
340 	unsigned long addr2;
341 };
342 
343 static void flush_tlb_range_ipi(void *info)
344 {
345 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
346 
347 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
348 }
349 
350 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
351 {
352 	struct mm_struct *mm = vma->vm_mm;
353 
354 	preempt_disable();
355 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
356 		struct flush_tlb_data fd;
357 
358 		fd.vma = vma;
359 		fd.addr1 = start;
360 		fd.addr2 = end;
361 		smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1, 1);
362 	} else {
363 		int i;
364 		for (i = 0; i < num_online_cpus(); i++)
365 			if (smp_processor_id() != i)
366 				cpu_context(i, mm) = 0;
367 	}
368 	local_flush_tlb_range(vma, start, end);
369 	preempt_enable();
370 }
371 
372 static void flush_tlb_kernel_range_ipi(void *info)
373 {
374 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
375 
376 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
377 }
378 
379 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
380 {
381 	struct flush_tlb_data fd;
382 
383 	fd.addr1 = start;
384 	fd.addr2 = end;
385 	on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1, 1);
386 }
387 
388 static void flush_tlb_page_ipi(void *info)
389 {
390 	struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
391 
392 	local_flush_tlb_page(fd->vma, fd->addr1);
393 }
394 
395 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
396 {
397 	preempt_disable();
398 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
399 		struct flush_tlb_data fd;
400 
401 		fd.vma = vma;
402 		fd.addr1 = page;
403 		smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1, 1);
404 	} else {
405 		int i;
406 		for (i = 0; i < num_online_cpus(); i++)
407 			if (smp_processor_id() != i)
408 				cpu_context(i, vma->vm_mm) = 0;
409 	}
410 	local_flush_tlb_page(vma, page);
411 	preempt_enable();
412 }
413 
414 static void flush_tlb_one_ipi(void *info)
415 {
416 	unsigned long vaddr = (unsigned long) info;
417 
418 	local_flush_tlb_one(vaddr);
419 }
420 
421 void flush_tlb_one(unsigned long vaddr)
422 {
423 	smp_call_function(flush_tlb_one_ipi, (void *) vaddr, 1, 1);
424 	local_flush_tlb_one(vaddr);
425 }
426 
427 EXPORT_SYMBOL(flush_tlb_page);
428 EXPORT_SYMBOL(flush_tlb_one);
429 EXPORT_SYMBOL(cpu_data);
430 EXPORT_SYMBOL(synchronize_irq);
431