1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 2 5 * of the License, or (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 * 16 * Copyright (C) 2000, 2001 Kanoj Sarcar 17 * Copyright (C) 2000, 2001 Ralf Baechle 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 20 */ 21 #include <linux/cache.h> 22 #include <linux/delay.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/smp.h> 26 #include <linux/spinlock.h> 27 #include <linux/threads.h> 28 #include <linux/export.h> 29 #include <linux/time.h> 30 #include <linux/timex.h> 31 #include <linux/sched/mm.h> 32 #include <linux/cpumask.h> 33 #include <linux/cpu.h> 34 #include <linux/err.h> 35 #include <linux/ftrace.h> 36 #include <linux/irqdomain.h> 37 #include <linux/of.h> 38 #include <linux/of_irq.h> 39 40 #include <linux/atomic.h> 41 #include <asm/cpu.h> 42 #include <asm/processor.h> 43 #include <asm/idle.h> 44 #include <asm/r4k-timer.h> 45 #include <asm/mips-cpc.h> 46 #include <asm/mmu_context.h> 47 #include <asm/time.h> 48 #include <asm/setup.h> 49 #include <asm/maar.h> 50 51 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 52 EXPORT_SYMBOL(__cpu_number_map); 53 54 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 55 EXPORT_SYMBOL(__cpu_logical_map); 56 57 /* Number of TCs (or siblings in Intel speak) per CPU core */ 58 int smp_num_siblings = 1; 59 EXPORT_SYMBOL(smp_num_siblings); 60 61 /* representing the TCs (or siblings in Intel speak) of each logical CPU */ 62 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 63 EXPORT_SYMBOL(cpu_sibling_map); 64 65 /* representing the core map of multi-core chips of each logical CPU */ 66 cpumask_t cpu_core_map[NR_CPUS] __read_mostly; 67 EXPORT_SYMBOL(cpu_core_map); 68 69 static DECLARE_COMPLETION(cpu_running); 70 71 /* 72 * A logcal cpu mask containing only one VPE per core to 73 * reduce the number of IPIs on large MT systems. 74 */ 75 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly; 76 EXPORT_SYMBOL(cpu_foreign_map); 77 78 /* representing cpus for which sibling maps can be computed */ 79 static cpumask_t cpu_sibling_setup_map; 80 81 /* representing cpus for which core maps can be computed */ 82 static cpumask_t cpu_core_setup_map; 83 84 cpumask_t cpu_coherent_mask; 85 86 #ifdef CONFIG_GENERIC_IRQ_IPI 87 static struct irq_desc *call_desc; 88 static struct irq_desc *sched_desc; 89 #endif 90 91 static inline void set_cpu_sibling_map(int cpu) 92 { 93 int i; 94 95 cpumask_set_cpu(cpu, &cpu_sibling_setup_map); 96 97 if (smp_num_siblings > 1) { 98 for_each_cpu(i, &cpu_sibling_setup_map) { 99 if (cpu_data[cpu].package == cpu_data[i].package && 100 cpu_data[cpu].core == cpu_data[i].core) { 101 cpumask_set_cpu(i, &cpu_sibling_map[cpu]); 102 cpumask_set_cpu(cpu, &cpu_sibling_map[i]); 103 } 104 } 105 } else 106 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]); 107 } 108 109 static inline void set_cpu_core_map(int cpu) 110 { 111 int i; 112 113 cpumask_set_cpu(cpu, &cpu_core_setup_map); 114 115 for_each_cpu(i, &cpu_core_setup_map) { 116 if (cpu_data[cpu].package == cpu_data[i].package) { 117 cpumask_set_cpu(i, &cpu_core_map[cpu]); 118 cpumask_set_cpu(cpu, &cpu_core_map[i]); 119 } 120 } 121 } 122 123 /* 124 * Calculate a new cpu_foreign_map mask whenever a 125 * new cpu appears or disappears. 126 */ 127 void calculate_cpu_foreign_map(void) 128 { 129 int i, k, core_present; 130 cpumask_t temp_foreign_map; 131 132 /* Re-calculate the mask */ 133 cpumask_clear(&temp_foreign_map); 134 for_each_online_cpu(i) { 135 core_present = 0; 136 for_each_cpu(k, &temp_foreign_map) 137 if (cpu_data[i].package == cpu_data[k].package && 138 cpu_data[i].core == cpu_data[k].core) 139 core_present = 1; 140 if (!core_present) 141 cpumask_set_cpu(i, &temp_foreign_map); 142 } 143 144 for_each_online_cpu(i) 145 cpumask_andnot(&cpu_foreign_map[i], 146 &temp_foreign_map, &cpu_sibling_map[i]); 147 } 148 149 struct plat_smp_ops *mp_ops; 150 EXPORT_SYMBOL(mp_ops); 151 152 void register_smp_ops(struct plat_smp_ops *ops) 153 { 154 if (mp_ops) 155 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 156 157 mp_ops = ops; 158 } 159 160 #ifdef CONFIG_GENERIC_IRQ_IPI 161 void mips_smp_send_ipi_single(int cpu, unsigned int action) 162 { 163 mips_smp_send_ipi_mask(cpumask_of(cpu), action); 164 } 165 166 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action) 167 { 168 unsigned long flags; 169 unsigned int core; 170 int cpu; 171 172 local_irq_save(flags); 173 174 switch (action) { 175 case SMP_CALL_FUNCTION: 176 __ipi_send_mask(call_desc, mask); 177 break; 178 179 case SMP_RESCHEDULE_YOURSELF: 180 __ipi_send_mask(sched_desc, mask); 181 break; 182 183 default: 184 BUG(); 185 } 186 187 if (mips_cpc_present()) { 188 for_each_cpu(cpu, mask) { 189 core = cpu_data[cpu].core; 190 191 if (core == current_cpu_data.core) 192 continue; 193 194 while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) { 195 mips_cm_lock_other(core, 0); 196 mips_cpc_lock_other(core); 197 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP); 198 mips_cpc_unlock_other(); 199 mips_cm_unlock_other(); 200 } 201 } 202 } 203 204 local_irq_restore(flags); 205 } 206 207 208 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id) 209 { 210 scheduler_ipi(); 211 212 return IRQ_HANDLED; 213 } 214 215 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id) 216 { 217 generic_smp_call_function_interrupt(); 218 219 return IRQ_HANDLED; 220 } 221 222 static struct irqaction irq_resched = { 223 .handler = ipi_resched_interrupt, 224 .flags = IRQF_PERCPU, 225 .name = "IPI resched" 226 }; 227 228 static struct irqaction irq_call = { 229 .handler = ipi_call_interrupt, 230 .flags = IRQF_PERCPU, 231 .name = "IPI call" 232 }; 233 234 static void smp_ipi_init_one(unsigned int virq, 235 struct irqaction *action) 236 { 237 int ret; 238 239 irq_set_handler(virq, handle_percpu_irq); 240 ret = setup_irq(virq, action); 241 BUG_ON(ret); 242 } 243 244 static unsigned int call_virq, sched_virq; 245 246 int mips_smp_ipi_allocate(const struct cpumask *mask) 247 { 248 int virq; 249 struct irq_domain *ipidomain; 250 struct device_node *node; 251 252 node = of_irq_find_parent(of_root); 253 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); 254 255 /* 256 * Some platforms have half DT setup. So if we found irq node but 257 * didn't find an ipidomain, try to search for one that is not in the 258 * DT. 259 */ 260 if (node && !ipidomain) 261 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); 262 263 /* 264 * There are systems which use IPI IRQ domains, but only have one 265 * registered when some runtime condition is met. For example a Malta 266 * kernel may include support for GIC & CPU interrupt controller IPI 267 * IRQ domains, but if run on a system with no GIC & no MT ASE then 268 * neither will be supported or registered. 269 * 270 * We only have a problem if we're actually using multiple CPUs so fail 271 * loudly if that is the case. Otherwise simply return, skipping IPI 272 * setup, if we're running with only a single CPU. 273 */ 274 if (!ipidomain) { 275 BUG_ON(num_present_cpus() > 1); 276 return 0; 277 } 278 279 virq = irq_reserve_ipi(ipidomain, mask); 280 BUG_ON(!virq); 281 if (!call_virq) 282 call_virq = virq; 283 284 virq = irq_reserve_ipi(ipidomain, mask); 285 BUG_ON(!virq); 286 if (!sched_virq) 287 sched_virq = virq; 288 289 if (irq_domain_is_ipi_per_cpu(ipidomain)) { 290 int cpu; 291 292 for_each_cpu(cpu, mask) { 293 smp_ipi_init_one(call_virq + cpu, &irq_call); 294 smp_ipi_init_one(sched_virq + cpu, &irq_resched); 295 } 296 } else { 297 smp_ipi_init_one(call_virq, &irq_call); 298 smp_ipi_init_one(sched_virq, &irq_resched); 299 } 300 301 return 0; 302 } 303 304 int mips_smp_ipi_free(const struct cpumask *mask) 305 { 306 struct irq_domain *ipidomain; 307 struct device_node *node; 308 309 node = of_irq_find_parent(of_root); 310 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); 311 312 /* 313 * Some platforms have half DT setup. So if we found irq node but 314 * didn't find an ipidomain, try to search for one that is not in the 315 * DT. 316 */ 317 if (node && !ipidomain) 318 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); 319 320 BUG_ON(!ipidomain); 321 322 if (irq_domain_is_ipi_per_cpu(ipidomain)) { 323 int cpu; 324 325 for_each_cpu(cpu, mask) { 326 remove_irq(call_virq + cpu, &irq_call); 327 remove_irq(sched_virq + cpu, &irq_resched); 328 } 329 } 330 irq_destroy_ipi(call_virq, mask); 331 irq_destroy_ipi(sched_virq, mask); 332 return 0; 333 } 334 335 336 static int __init mips_smp_ipi_init(void) 337 { 338 if (num_possible_cpus() == 1) 339 return 0; 340 341 mips_smp_ipi_allocate(cpu_possible_mask); 342 343 call_desc = irq_to_desc(call_virq); 344 sched_desc = irq_to_desc(sched_virq); 345 346 return 0; 347 } 348 early_initcall(mips_smp_ipi_init); 349 #endif 350 351 /* 352 * First C code run on the secondary CPUs after being started up by 353 * the master. 354 */ 355 asmlinkage void start_secondary(void) 356 { 357 unsigned int cpu; 358 359 cpu_probe(); 360 per_cpu_trap_init(false); 361 mips_clockevent_init(); 362 mp_ops->init_secondary(); 363 cpu_report(); 364 maar_init(); 365 366 /* 367 * XXX parity protection should be folded in here when it's converted 368 * to an option instead of something based on .cputype 369 */ 370 371 calibrate_delay(); 372 preempt_disable(); 373 cpu = smp_processor_id(); 374 cpu_data[cpu].udelay_val = loops_per_jiffy; 375 376 cpumask_set_cpu(cpu, &cpu_coherent_mask); 377 notify_cpu_starting(cpu); 378 379 complete(&cpu_running); 380 synchronise_count_slave(cpu); 381 382 set_cpu_online(cpu, true); 383 384 set_cpu_sibling_map(cpu); 385 set_cpu_core_map(cpu); 386 387 calculate_cpu_foreign_map(); 388 389 /* 390 * irq will be enabled in ->smp_finish(), enabling it too early 391 * is dangerous. 392 */ 393 WARN_ON_ONCE(!irqs_disabled()); 394 mp_ops->smp_finish(); 395 396 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 397 } 398 399 static void stop_this_cpu(void *dummy) 400 { 401 /* 402 * Remove this CPU: 403 */ 404 405 set_cpu_online(smp_processor_id(), false); 406 calculate_cpu_foreign_map(); 407 local_irq_disable(); 408 while (1); 409 } 410 411 void smp_send_stop(void) 412 { 413 smp_call_function(stop_this_cpu, NULL, 0); 414 } 415 416 void __init smp_cpus_done(unsigned int max_cpus) 417 { 418 } 419 420 /* called from main before smp_init() */ 421 void __init smp_prepare_cpus(unsigned int max_cpus) 422 { 423 init_new_context(current, &init_mm); 424 current_thread_info()->cpu = 0; 425 mp_ops->prepare_cpus(max_cpus); 426 set_cpu_sibling_map(0); 427 set_cpu_core_map(0); 428 calculate_cpu_foreign_map(); 429 #ifndef CONFIG_HOTPLUG_CPU 430 init_cpu_present(cpu_possible_mask); 431 #endif 432 cpumask_copy(&cpu_coherent_mask, cpu_possible_mask); 433 } 434 435 /* preload SMP state for boot cpu */ 436 void smp_prepare_boot_cpu(void) 437 { 438 set_cpu_possible(0, true); 439 set_cpu_online(0, true); 440 } 441 442 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 443 { 444 mp_ops->boot_secondary(cpu, tidle); 445 446 /* 447 * We must check for timeout here, as the CPU will not be marked 448 * online until the counters are synchronised. 449 */ 450 if (!wait_for_completion_timeout(&cpu_running, 451 msecs_to_jiffies(1000))) { 452 pr_crit("CPU%u: failed to start\n", cpu); 453 return -EIO; 454 } 455 456 synchronise_count_master(cpu); 457 return 0; 458 } 459 460 /* Not really SMP stuff ... */ 461 int setup_profiling_timer(unsigned int multiplier) 462 { 463 return 0; 464 } 465 466 static void flush_tlb_all_ipi(void *info) 467 { 468 local_flush_tlb_all(); 469 } 470 471 void flush_tlb_all(void) 472 { 473 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 474 } 475 476 static void flush_tlb_mm_ipi(void *mm) 477 { 478 local_flush_tlb_mm((struct mm_struct *)mm); 479 } 480 481 /* 482 * Special Variant of smp_call_function for use by TLB functions: 483 * 484 * o No return value 485 * o collapses to normal function call on UP kernels 486 * o collapses to normal function call on systems with a single shared 487 * primary cache. 488 */ 489 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) 490 { 491 smp_call_function(func, info, 1); 492 } 493 494 static inline void smp_on_each_tlb(void (*func) (void *info), void *info) 495 { 496 preempt_disable(); 497 498 smp_on_other_tlbs(func, info); 499 func(info); 500 501 preempt_enable(); 502 } 503 504 /* 505 * The following tlb flush calls are invoked when old translations are 506 * being torn down, or pte attributes are changing. For single threaded 507 * address spaces, a new context is obtained on the current cpu, and tlb 508 * context on other cpus are invalidated to force a new context allocation 509 * at switch_mm time, should the mm ever be used on other cpus. For 510 * multithreaded address spaces, intercpu interrupts have to be sent. 511 * Another case where intercpu interrupts are required is when the target 512 * mm might be active on another cpu (eg debuggers doing the flushes on 513 * behalf of debugees, kswapd stealing pages from another process etc). 514 * Kanoj 07/00. 515 */ 516 517 void flush_tlb_mm(struct mm_struct *mm) 518 { 519 preempt_disable(); 520 521 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 522 smp_on_other_tlbs(flush_tlb_mm_ipi, mm); 523 } else { 524 unsigned int cpu; 525 526 for_each_online_cpu(cpu) { 527 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 528 cpu_context(cpu, mm) = 0; 529 } 530 } 531 local_flush_tlb_mm(mm); 532 533 preempt_enable(); 534 } 535 536 struct flush_tlb_data { 537 struct vm_area_struct *vma; 538 unsigned long addr1; 539 unsigned long addr2; 540 }; 541 542 static void flush_tlb_range_ipi(void *info) 543 { 544 struct flush_tlb_data *fd = info; 545 546 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 547 } 548 549 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 550 { 551 struct mm_struct *mm = vma->vm_mm; 552 553 preempt_disable(); 554 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 555 struct flush_tlb_data fd = { 556 .vma = vma, 557 .addr1 = start, 558 .addr2 = end, 559 }; 560 561 smp_on_other_tlbs(flush_tlb_range_ipi, &fd); 562 } else { 563 unsigned int cpu; 564 int exec = vma->vm_flags & VM_EXEC; 565 566 for_each_online_cpu(cpu) { 567 /* 568 * flush_cache_range() will only fully flush icache if 569 * the VMA is executable, otherwise we must invalidate 570 * ASID without it appearing to has_valid_asid() as if 571 * mm has been completely unused by that CPU. 572 */ 573 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 574 cpu_context(cpu, mm) = !exec; 575 } 576 } 577 local_flush_tlb_range(vma, start, end); 578 preempt_enable(); 579 } 580 581 static void flush_tlb_kernel_range_ipi(void *info) 582 { 583 struct flush_tlb_data *fd = info; 584 585 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 586 } 587 588 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 589 { 590 struct flush_tlb_data fd = { 591 .addr1 = start, 592 .addr2 = end, 593 }; 594 595 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 596 } 597 598 static void flush_tlb_page_ipi(void *info) 599 { 600 struct flush_tlb_data *fd = info; 601 602 local_flush_tlb_page(fd->vma, fd->addr1); 603 } 604 605 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 606 { 607 preempt_disable(); 608 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 609 struct flush_tlb_data fd = { 610 .vma = vma, 611 .addr1 = page, 612 }; 613 614 smp_on_other_tlbs(flush_tlb_page_ipi, &fd); 615 } else { 616 unsigned int cpu; 617 618 for_each_online_cpu(cpu) { 619 /* 620 * flush_cache_page() only does partial flushes, so 621 * invalidate ASID without it appearing to 622 * has_valid_asid() as if mm has been completely unused 623 * by that CPU. 624 */ 625 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) 626 cpu_context(cpu, vma->vm_mm) = 1; 627 } 628 } 629 local_flush_tlb_page(vma, page); 630 preempt_enable(); 631 } 632 633 static void flush_tlb_one_ipi(void *info) 634 { 635 unsigned long vaddr = (unsigned long) info; 636 637 local_flush_tlb_one(vaddr); 638 } 639 640 void flush_tlb_one(unsigned long vaddr) 641 { 642 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); 643 } 644 645 EXPORT_SYMBOL(flush_tlb_page); 646 EXPORT_SYMBOL(flush_tlb_one); 647 648 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 649 650 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count); 651 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd); 652 653 void tick_broadcast(const struct cpumask *mask) 654 { 655 atomic_t *count; 656 struct call_single_data *csd; 657 int cpu; 658 659 for_each_cpu(cpu, mask) { 660 count = &per_cpu(tick_broadcast_count, cpu); 661 csd = &per_cpu(tick_broadcast_csd, cpu); 662 663 if (atomic_inc_return(count) == 1) 664 smp_call_function_single_async(cpu, csd); 665 } 666 } 667 668 static void tick_broadcast_callee(void *info) 669 { 670 int cpu = smp_processor_id(); 671 tick_receive_broadcast(); 672 atomic_set(&per_cpu(tick_broadcast_count, cpu), 0); 673 } 674 675 static int __init tick_broadcast_init(void) 676 { 677 struct call_single_data *csd; 678 int cpu; 679 680 for (cpu = 0; cpu < NR_CPUS; cpu++) { 681 csd = &per_cpu(tick_broadcast_csd, cpu); 682 csd->func = tick_broadcast_callee; 683 } 684 685 return 0; 686 } 687 early_initcall(tick_broadcast_init); 688 689 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */ 690