xref: /openbmc/linux/arch/mips/kernel/smp.c (revision 7e035230)
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 
37 #include <linux/atomic.h>
38 #include <asm/cpu.h>
39 #include <asm/processor.h>
40 #include <asm/r4k-timer.h>
41 #include <asm/mmu_context.h>
42 #include <asm/time.h>
43 #include <asm/setup.h>
44 
45 #ifdef CONFIG_MIPS_MT_SMTC
46 #include <asm/mipsmtregs.h>
47 #endif /* CONFIG_MIPS_MT_SMTC */
48 
49 volatile cpumask_t cpu_callin_map;	/* Bitmask of started secondaries */
50 
51 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
52 EXPORT_SYMBOL(__cpu_number_map);
53 
54 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
55 EXPORT_SYMBOL(__cpu_logical_map);
56 
57 /* Number of TCs (or siblings in Intel speak) per CPU core */
58 int smp_num_siblings = 1;
59 EXPORT_SYMBOL(smp_num_siblings);
60 
61 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
62 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
63 EXPORT_SYMBOL(cpu_sibling_map);
64 
65 /* representing cpus for which sibling maps can be computed */
66 static cpumask_t cpu_sibling_setup_map;
67 
68 static inline void set_cpu_sibling_map(int cpu)
69 {
70 	int i;
71 
72 	cpu_set(cpu, cpu_sibling_setup_map);
73 
74 	if (smp_num_siblings > 1) {
75 		for_each_cpu_mask(i, cpu_sibling_setup_map) {
76 			if (cpu_data[cpu].core == cpu_data[i].core) {
77 				cpu_set(i, cpu_sibling_map[cpu]);
78 				cpu_set(cpu, cpu_sibling_map[i]);
79 			}
80 		}
81 	} else
82 		cpu_set(cpu, cpu_sibling_map[cpu]);
83 }
84 
85 struct plat_smp_ops *mp_ops;
86 
87 __cpuinit void register_smp_ops(struct plat_smp_ops *ops)
88 {
89 	if (mp_ops)
90 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
91 
92 	mp_ops = ops;
93 }
94 
95 /*
96  * First C code run on the secondary CPUs after being started up by
97  * the master.
98  */
99 asmlinkage __cpuinit void start_secondary(void)
100 {
101 	unsigned int cpu;
102 
103 #ifdef CONFIG_MIPS_MT_SMTC
104 	/* Only do cpu_probe for first TC of CPU */
105 	if ((read_c0_tcbind() & TCBIND_CURTC) != 0)
106 		__cpu_name[smp_processor_id()] = __cpu_name[0];
107 	else
108 #endif /* CONFIG_MIPS_MT_SMTC */
109 	cpu_probe();
110 	cpu_report();
111 	per_cpu_trap_init(false);
112 	mips_clockevent_init();
113 	mp_ops->init_secondary();
114 
115 	/*
116 	 * XXX parity protection should be folded in here when it's converted
117 	 * to an option instead of something based on .cputype
118 	 */
119 
120 	calibrate_delay();
121 	preempt_disable();
122 	cpu = smp_processor_id();
123 	cpu_data[cpu].udelay_val = loops_per_jiffy;
124 
125 	notify_cpu_starting(cpu);
126 
127 	set_cpu_online(cpu, true);
128 
129 	set_cpu_sibling_map(cpu);
130 
131 	cpu_set(cpu, cpu_callin_map);
132 
133 	synchronise_count_slave();
134 
135 	/*
136 	 * irq will be enabled in ->smp_finish(), enabling it too early
137 	 * is dangerous.
138 	 */
139 	WARN_ON_ONCE(!irqs_disabled());
140 	mp_ops->smp_finish();
141 
142 	cpu_idle();
143 }
144 
145 /*
146  * Call into both interrupt handlers, as we share the IPI for them
147  */
148 void __irq_entry smp_call_function_interrupt(void)
149 {
150 	irq_enter();
151 	generic_smp_call_function_single_interrupt();
152 	generic_smp_call_function_interrupt();
153 	irq_exit();
154 }
155 
156 static void stop_this_cpu(void *dummy)
157 {
158 	/*
159 	 * Remove this CPU:
160 	 */
161 	set_cpu_online(smp_processor_id(), false);
162 	for (;;) {
163 		if (cpu_wait)
164 			(*cpu_wait)();		/* Wait if available. */
165 	}
166 }
167 
168 void smp_send_stop(void)
169 {
170 	smp_call_function(stop_this_cpu, NULL, 0);
171 }
172 
173 void __init smp_cpus_done(unsigned int max_cpus)
174 {
175 	mp_ops->cpus_done();
176 	synchronise_count_master();
177 }
178 
179 /* called from main before smp_init() */
180 void __init smp_prepare_cpus(unsigned int max_cpus)
181 {
182 	init_new_context(current, &init_mm);
183 	current_thread_info()->cpu = 0;
184 	mp_ops->prepare_cpus(max_cpus);
185 	set_cpu_sibling_map(0);
186 #ifndef CONFIG_HOTPLUG_CPU
187 	init_cpu_present(cpu_possible_mask);
188 #endif
189 }
190 
191 /* preload SMP state for boot cpu */
192 void __devinit smp_prepare_boot_cpu(void)
193 {
194 	set_cpu_possible(0, true);
195 	set_cpu_online(0, true);
196 	cpu_set(0, cpu_callin_map);
197 }
198 
199 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
200 {
201 	mp_ops->boot_secondary(cpu, tidle);
202 
203 	/*
204 	 * Trust is futile.  We should really have timeouts ...
205 	 */
206 	while (!cpu_isset(cpu, cpu_callin_map))
207 		udelay(100);
208 
209 	return 0;
210 }
211 
212 /* Not really SMP stuff ... */
213 int setup_profiling_timer(unsigned int multiplier)
214 {
215 	return 0;
216 }
217 
218 static void flush_tlb_all_ipi(void *info)
219 {
220 	local_flush_tlb_all();
221 }
222 
223 void flush_tlb_all(void)
224 {
225 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
226 }
227 
228 static void flush_tlb_mm_ipi(void *mm)
229 {
230 	local_flush_tlb_mm((struct mm_struct *)mm);
231 }
232 
233 /*
234  * Special Variant of smp_call_function for use by TLB functions:
235  *
236  *  o No return value
237  *  o collapses to normal function call on UP kernels
238  *  o collapses to normal function call on systems with a single shared
239  *    primary cache.
240  *  o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core.
241  */
242 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
243 {
244 #ifndef CONFIG_MIPS_MT_SMTC
245 	smp_call_function(func, info, 1);
246 #endif
247 }
248 
249 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
250 {
251 	preempt_disable();
252 
253 	smp_on_other_tlbs(func, info);
254 	func(info);
255 
256 	preempt_enable();
257 }
258 
259 /*
260  * The following tlb flush calls are invoked when old translations are
261  * being torn down, or pte attributes are changing. For single threaded
262  * address spaces, a new context is obtained on the current cpu, and tlb
263  * context on other cpus are invalidated to force a new context allocation
264  * at switch_mm time, should the mm ever be used on other cpus. For
265  * multithreaded address spaces, intercpu interrupts have to be sent.
266  * Another case where intercpu interrupts are required is when the target
267  * mm might be active on another cpu (eg debuggers doing the flushes on
268  * behalf of debugees, kswapd stealing pages from another process etc).
269  * Kanoj 07/00.
270  */
271 
272 void flush_tlb_mm(struct mm_struct *mm)
273 {
274 	preempt_disable();
275 
276 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
277 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
278 	} else {
279 		unsigned int cpu;
280 
281 		for_each_online_cpu(cpu) {
282 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
283 				cpu_context(cpu, mm) = 0;
284 		}
285 	}
286 	local_flush_tlb_mm(mm);
287 
288 	preempt_enable();
289 }
290 
291 struct flush_tlb_data {
292 	struct vm_area_struct *vma;
293 	unsigned long addr1;
294 	unsigned long addr2;
295 };
296 
297 static void flush_tlb_range_ipi(void *info)
298 {
299 	struct flush_tlb_data *fd = info;
300 
301 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
302 }
303 
304 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
305 {
306 	struct mm_struct *mm = vma->vm_mm;
307 
308 	preempt_disable();
309 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
310 		struct flush_tlb_data fd = {
311 			.vma = vma,
312 			.addr1 = start,
313 			.addr2 = end,
314 		};
315 
316 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
317 	} else {
318 		unsigned int cpu;
319 
320 		for_each_online_cpu(cpu) {
321 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
322 				cpu_context(cpu, mm) = 0;
323 		}
324 	}
325 	local_flush_tlb_range(vma, start, end);
326 	preempt_enable();
327 }
328 
329 static void flush_tlb_kernel_range_ipi(void *info)
330 {
331 	struct flush_tlb_data *fd = info;
332 
333 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
334 }
335 
336 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
337 {
338 	struct flush_tlb_data fd = {
339 		.addr1 = start,
340 		.addr2 = end,
341 	};
342 
343 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
344 }
345 
346 static void flush_tlb_page_ipi(void *info)
347 {
348 	struct flush_tlb_data *fd = info;
349 
350 	local_flush_tlb_page(fd->vma, fd->addr1);
351 }
352 
353 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
354 {
355 	preempt_disable();
356 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
357 		struct flush_tlb_data fd = {
358 			.vma = vma,
359 			.addr1 = page,
360 		};
361 
362 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
363 	} else {
364 		unsigned int cpu;
365 
366 		for_each_online_cpu(cpu) {
367 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
368 				cpu_context(cpu, vma->vm_mm) = 0;
369 		}
370 	}
371 	local_flush_tlb_page(vma, page);
372 	preempt_enable();
373 }
374 
375 static void flush_tlb_one_ipi(void *info)
376 {
377 	unsigned long vaddr = (unsigned long) info;
378 
379 	local_flush_tlb_one(vaddr);
380 }
381 
382 void flush_tlb_one(unsigned long vaddr)
383 {
384 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
385 }
386 
387 EXPORT_SYMBOL(flush_tlb_page);
388 EXPORT_SYMBOL(flush_tlb_one);
389