1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 2 5 * of the License, or (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 * 16 * Copyright (C) 2000, 2001 Kanoj Sarcar 17 * Copyright (C) 2000, 2001 Ralf Baechle 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 20 */ 21 #include <linux/cache.h> 22 #include <linux/delay.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/smp.h> 26 #include <linux/spinlock.h> 27 #include <linux/threads.h> 28 #include <linux/module.h> 29 #include <linux/time.h> 30 #include <linux/timex.h> 31 #include <linux/sched.h> 32 #include <linux/cpumask.h> 33 #include <linux/cpu.h> 34 #include <linux/err.h> 35 #include <linux/ftrace.h> 36 #include <linux/irqdomain.h> 37 #include <linux/of.h> 38 #include <linux/of_irq.h> 39 40 #include <linux/atomic.h> 41 #include <asm/cpu.h> 42 #include <asm/processor.h> 43 #include <asm/idle.h> 44 #include <asm/r4k-timer.h> 45 #include <asm/mips-cpc.h> 46 #include <asm/mmu_context.h> 47 #include <asm/time.h> 48 #include <asm/setup.h> 49 #include <asm/maar.h> 50 51 cpumask_t cpu_callin_map; /* Bitmask of started secondaries */ 52 53 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 54 EXPORT_SYMBOL(__cpu_number_map); 55 56 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 57 EXPORT_SYMBOL(__cpu_logical_map); 58 59 /* Number of TCs (or siblings in Intel speak) per CPU core */ 60 int smp_num_siblings = 1; 61 EXPORT_SYMBOL(smp_num_siblings); 62 63 /* representing the TCs (or siblings in Intel speak) of each logical CPU */ 64 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 65 EXPORT_SYMBOL(cpu_sibling_map); 66 67 /* representing the core map of multi-core chips of each logical CPU */ 68 cpumask_t cpu_core_map[NR_CPUS] __read_mostly; 69 EXPORT_SYMBOL(cpu_core_map); 70 71 /* 72 * A logcal cpu mask containing only one VPE per core to 73 * reduce the number of IPIs on large MT systems. 74 */ 75 cpumask_t cpu_foreign_map __read_mostly; 76 EXPORT_SYMBOL(cpu_foreign_map); 77 78 /* representing cpus for which sibling maps can be computed */ 79 static cpumask_t cpu_sibling_setup_map; 80 81 /* representing cpus for which core maps can be computed */ 82 static cpumask_t cpu_core_setup_map; 83 84 cpumask_t cpu_coherent_mask; 85 86 #ifdef CONFIG_GENERIC_IRQ_IPI 87 static struct irq_desc *call_desc; 88 static struct irq_desc *sched_desc; 89 #endif 90 91 static inline void set_cpu_sibling_map(int cpu) 92 { 93 int i; 94 95 cpumask_set_cpu(cpu, &cpu_sibling_setup_map); 96 97 if (smp_num_siblings > 1) { 98 for_each_cpu(i, &cpu_sibling_setup_map) { 99 if (cpu_data[cpu].package == cpu_data[i].package && 100 cpu_data[cpu].core == cpu_data[i].core) { 101 cpumask_set_cpu(i, &cpu_sibling_map[cpu]); 102 cpumask_set_cpu(cpu, &cpu_sibling_map[i]); 103 } 104 } 105 } else 106 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]); 107 } 108 109 static inline void set_cpu_core_map(int cpu) 110 { 111 int i; 112 113 cpumask_set_cpu(cpu, &cpu_core_setup_map); 114 115 for_each_cpu(i, &cpu_core_setup_map) { 116 if (cpu_data[cpu].package == cpu_data[i].package) { 117 cpumask_set_cpu(i, &cpu_core_map[cpu]); 118 cpumask_set_cpu(cpu, &cpu_core_map[i]); 119 } 120 } 121 } 122 123 /* 124 * Calculate a new cpu_foreign_map mask whenever a 125 * new cpu appears or disappears. 126 */ 127 static inline void calculate_cpu_foreign_map(void) 128 { 129 int i, k, core_present; 130 cpumask_t temp_foreign_map; 131 132 /* Re-calculate the mask */ 133 cpumask_clear(&temp_foreign_map); 134 for_each_online_cpu(i) { 135 core_present = 0; 136 for_each_cpu(k, &temp_foreign_map) 137 if (cpu_data[i].package == cpu_data[k].package && 138 cpu_data[i].core == cpu_data[k].core) 139 core_present = 1; 140 if (!core_present) 141 cpumask_set_cpu(i, &temp_foreign_map); 142 } 143 144 cpumask_copy(&cpu_foreign_map, &temp_foreign_map); 145 } 146 147 struct plat_smp_ops *mp_ops; 148 EXPORT_SYMBOL(mp_ops); 149 150 void register_smp_ops(struct plat_smp_ops *ops) 151 { 152 if (mp_ops) 153 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 154 155 mp_ops = ops; 156 } 157 158 #ifdef CONFIG_GENERIC_IRQ_IPI 159 void mips_smp_send_ipi_single(int cpu, unsigned int action) 160 { 161 mips_smp_send_ipi_mask(cpumask_of(cpu), action); 162 } 163 164 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action) 165 { 166 unsigned long flags; 167 unsigned int core; 168 int cpu; 169 170 local_irq_save(flags); 171 172 switch (action) { 173 case SMP_CALL_FUNCTION: 174 __ipi_send_mask(call_desc, mask); 175 break; 176 177 case SMP_RESCHEDULE_YOURSELF: 178 __ipi_send_mask(sched_desc, mask); 179 break; 180 181 default: 182 BUG(); 183 } 184 185 if (mips_cpc_present()) { 186 for_each_cpu(cpu, mask) { 187 core = cpu_data[cpu].core; 188 189 if (core == current_cpu_data.core) 190 continue; 191 192 while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) { 193 mips_cpc_lock_other(core); 194 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP); 195 mips_cpc_unlock_other(); 196 } 197 } 198 } 199 200 local_irq_restore(flags); 201 } 202 203 204 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id) 205 { 206 scheduler_ipi(); 207 208 return IRQ_HANDLED; 209 } 210 211 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id) 212 { 213 generic_smp_call_function_interrupt(); 214 215 return IRQ_HANDLED; 216 } 217 218 static struct irqaction irq_resched = { 219 .handler = ipi_resched_interrupt, 220 .flags = IRQF_PERCPU, 221 .name = "IPI resched" 222 }; 223 224 static struct irqaction irq_call = { 225 .handler = ipi_call_interrupt, 226 .flags = IRQF_PERCPU, 227 .name = "IPI call" 228 }; 229 230 static __init void smp_ipi_init_one(unsigned int virq, 231 struct irqaction *action) 232 { 233 int ret; 234 235 irq_set_handler(virq, handle_percpu_irq); 236 ret = setup_irq(virq, action); 237 BUG_ON(ret); 238 } 239 240 static int __init mips_smp_ipi_init(void) 241 { 242 unsigned int call_virq, sched_virq; 243 struct irq_domain *ipidomain; 244 struct device_node *node; 245 246 node = of_irq_find_parent(of_root); 247 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); 248 249 /* 250 * Some platforms have half DT setup. So if we found irq node but 251 * didn't find an ipidomain, try to search for one that is not in the 252 * DT. 253 */ 254 if (node && !ipidomain) 255 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); 256 257 /* 258 * There are systems which only use IPI domains some of the time, 259 * depending upon configuration we don't know until runtime. An 260 * example is Malta where we may compile in support for GIC & the 261 * MT ASE, but run on a system which has multiple VPEs in a single 262 * core and doesn't include a GIC. Until all IPI implementations 263 * have been converted to use IPI domains the best we can do here 264 * is to return & hope some other code sets up the IPIs. 265 */ 266 if (!ipidomain) 267 return 0; 268 269 call_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask); 270 BUG_ON(!call_virq); 271 272 sched_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask); 273 BUG_ON(!sched_virq); 274 275 if (irq_domain_is_ipi_per_cpu(ipidomain)) { 276 int cpu; 277 278 for_each_cpu(cpu, cpu_possible_mask) { 279 smp_ipi_init_one(call_virq + cpu, &irq_call); 280 smp_ipi_init_one(sched_virq + cpu, &irq_resched); 281 } 282 } else { 283 smp_ipi_init_one(call_virq, &irq_call); 284 smp_ipi_init_one(sched_virq, &irq_resched); 285 } 286 287 call_desc = irq_to_desc(call_virq); 288 sched_desc = irq_to_desc(sched_virq); 289 290 return 0; 291 } 292 early_initcall(mips_smp_ipi_init); 293 #endif 294 295 /* 296 * First C code run on the secondary CPUs after being started up by 297 * the master. 298 */ 299 asmlinkage void start_secondary(void) 300 { 301 unsigned int cpu; 302 303 cpu_probe(); 304 per_cpu_trap_init(false); 305 mips_clockevent_init(); 306 mp_ops->init_secondary(); 307 cpu_report(); 308 maar_init(); 309 310 /* 311 * XXX parity protection should be folded in here when it's converted 312 * to an option instead of something based on .cputype 313 */ 314 315 calibrate_delay(); 316 preempt_disable(); 317 cpu = smp_processor_id(); 318 cpu_data[cpu].udelay_val = loops_per_jiffy; 319 320 cpumask_set_cpu(cpu, &cpu_coherent_mask); 321 notify_cpu_starting(cpu); 322 323 set_cpu_online(cpu, true); 324 325 set_cpu_sibling_map(cpu); 326 set_cpu_core_map(cpu); 327 328 calculate_cpu_foreign_map(); 329 330 cpumask_set_cpu(cpu, &cpu_callin_map); 331 332 synchronise_count_slave(cpu); 333 334 /* 335 * irq will be enabled in ->smp_finish(), enabling it too early 336 * is dangerous. 337 */ 338 WARN_ON_ONCE(!irqs_disabled()); 339 mp_ops->smp_finish(); 340 341 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 342 } 343 344 static void stop_this_cpu(void *dummy) 345 { 346 /* 347 * Remove this CPU. Be a bit slow here and 348 * set the bits for every online CPU so we don't miss 349 * any IPI whilst taking this VPE down. 350 */ 351 352 cpumask_copy(&cpu_foreign_map, cpu_online_mask); 353 354 /* Make it visible to every other CPU */ 355 smp_mb(); 356 357 set_cpu_online(smp_processor_id(), false); 358 calculate_cpu_foreign_map(); 359 local_irq_disable(); 360 while (1); 361 } 362 363 void smp_send_stop(void) 364 { 365 smp_call_function(stop_this_cpu, NULL, 0); 366 } 367 368 void __init smp_cpus_done(unsigned int max_cpus) 369 { 370 } 371 372 /* called from main before smp_init() */ 373 void __init smp_prepare_cpus(unsigned int max_cpus) 374 { 375 init_new_context(current, &init_mm); 376 current_thread_info()->cpu = 0; 377 mp_ops->prepare_cpus(max_cpus); 378 set_cpu_sibling_map(0); 379 set_cpu_core_map(0); 380 calculate_cpu_foreign_map(); 381 #ifndef CONFIG_HOTPLUG_CPU 382 init_cpu_present(cpu_possible_mask); 383 #endif 384 cpumask_copy(&cpu_coherent_mask, cpu_possible_mask); 385 } 386 387 /* preload SMP state for boot cpu */ 388 void smp_prepare_boot_cpu(void) 389 { 390 set_cpu_possible(0, true); 391 set_cpu_online(0, true); 392 cpumask_set_cpu(0, &cpu_callin_map); 393 } 394 395 int __cpu_up(unsigned int cpu, struct task_struct *tidle) 396 { 397 mp_ops->boot_secondary(cpu, tidle); 398 399 /* 400 * Trust is futile. We should really have timeouts ... 401 */ 402 while (!cpumask_test_cpu(cpu, &cpu_callin_map)) { 403 udelay(100); 404 schedule(); 405 } 406 407 synchronise_count_master(cpu); 408 return 0; 409 } 410 411 /* Not really SMP stuff ... */ 412 int setup_profiling_timer(unsigned int multiplier) 413 { 414 return 0; 415 } 416 417 static void flush_tlb_all_ipi(void *info) 418 { 419 local_flush_tlb_all(); 420 } 421 422 void flush_tlb_all(void) 423 { 424 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 425 } 426 427 static void flush_tlb_mm_ipi(void *mm) 428 { 429 local_flush_tlb_mm((struct mm_struct *)mm); 430 } 431 432 /* 433 * Special Variant of smp_call_function for use by TLB functions: 434 * 435 * o No return value 436 * o collapses to normal function call on UP kernels 437 * o collapses to normal function call on systems with a single shared 438 * primary cache. 439 */ 440 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) 441 { 442 smp_call_function(func, info, 1); 443 } 444 445 static inline void smp_on_each_tlb(void (*func) (void *info), void *info) 446 { 447 preempt_disable(); 448 449 smp_on_other_tlbs(func, info); 450 func(info); 451 452 preempt_enable(); 453 } 454 455 /* 456 * The following tlb flush calls are invoked when old translations are 457 * being torn down, or pte attributes are changing. For single threaded 458 * address spaces, a new context is obtained on the current cpu, and tlb 459 * context on other cpus are invalidated to force a new context allocation 460 * at switch_mm time, should the mm ever be used on other cpus. For 461 * multithreaded address spaces, intercpu interrupts have to be sent. 462 * Another case where intercpu interrupts are required is when the target 463 * mm might be active on another cpu (eg debuggers doing the flushes on 464 * behalf of debugees, kswapd stealing pages from another process etc). 465 * Kanoj 07/00. 466 */ 467 468 void flush_tlb_mm(struct mm_struct *mm) 469 { 470 preempt_disable(); 471 472 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 473 smp_on_other_tlbs(flush_tlb_mm_ipi, mm); 474 } else { 475 unsigned int cpu; 476 477 for_each_online_cpu(cpu) { 478 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 479 cpu_context(cpu, mm) = 0; 480 } 481 } 482 local_flush_tlb_mm(mm); 483 484 preempt_enable(); 485 } 486 487 struct flush_tlb_data { 488 struct vm_area_struct *vma; 489 unsigned long addr1; 490 unsigned long addr2; 491 }; 492 493 static void flush_tlb_range_ipi(void *info) 494 { 495 struct flush_tlb_data *fd = info; 496 497 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 498 } 499 500 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 501 { 502 struct mm_struct *mm = vma->vm_mm; 503 504 preempt_disable(); 505 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 506 struct flush_tlb_data fd = { 507 .vma = vma, 508 .addr1 = start, 509 .addr2 = end, 510 }; 511 512 smp_on_other_tlbs(flush_tlb_range_ipi, &fd); 513 } else { 514 unsigned int cpu; 515 516 for_each_online_cpu(cpu) { 517 if (cpu != smp_processor_id() && cpu_context(cpu, mm)) 518 cpu_context(cpu, mm) = 0; 519 } 520 } 521 local_flush_tlb_range(vma, start, end); 522 preempt_enable(); 523 } 524 525 static void flush_tlb_kernel_range_ipi(void *info) 526 { 527 struct flush_tlb_data *fd = info; 528 529 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 530 } 531 532 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 533 { 534 struct flush_tlb_data fd = { 535 .addr1 = start, 536 .addr2 = end, 537 }; 538 539 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 540 } 541 542 static void flush_tlb_page_ipi(void *info) 543 { 544 struct flush_tlb_data *fd = info; 545 546 local_flush_tlb_page(fd->vma, fd->addr1); 547 } 548 549 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 550 { 551 preempt_disable(); 552 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 553 struct flush_tlb_data fd = { 554 .vma = vma, 555 .addr1 = page, 556 }; 557 558 smp_on_other_tlbs(flush_tlb_page_ipi, &fd); 559 } else { 560 unsigned int cpu; 561 562 for_each_online_cpu(cpu) { 563 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) 564 cpu_context(cpu, vma->vm_mm) = 0; 565 } 566 } 567 local_flush_tlb_page(vma, page); 568 preempt_enable(); 569 } 570 571 static void flush_tlb_one_ipi(void *info) 572 { 573 unsigned long vaddr = (unsigned long) info; 574 575 local_flush_tlb_one(vaddr); 576 } 577 578 void flush_tlb_one(unsigned long vaddr) 579 { 580 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); 581 } 582 583 EXPORT_SYMBOL(flush_tlb_page); 584 EXPORT_SYMBOL(flush_tlb_one); 585 586 #if defined(CONFIG_KEXEC) 587 void (*dump_ipi_function_ptr)(void *) = NULL; 588 void dump_send_ipi(void (*dump_ipi_callback)(void *)) 589 { 590 int i; 591 int cpu = smp_processor_id(); 592 593 dump_ipi_function_ptr = dump_ipi_callback; 594 smp_mb(); 595 for_each_online_cpu(i) 596 if (i != cpu) 597 mp_ops->send_ipi_single(i, SMP_DUMP); 598 599 } 600 EXPORT_SYMBOL(dump_send_ipi); 601 #endif 602 603 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 604 605 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count); 606 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd); 607 608 void tick_broadcast(const struct cpumask *mask) 609 { 610 atomic_t *count; 611 struct call_single_data *csd; 612 int cpu; 613 614 for_each_cpu(cpu, mask) { 615 count = &per_cpu(tick_broadcast_count, cpu); 616 csd = &per_cpu(tick_broadcast_csd, cpu); 617 618 if (atomic_inc_return(count) == 1) 619 smp_call_function_single_async(cpu, csd); 620 } 621 } 622 623 static void tick_broadcast_callee(void *info) 624 { 625 int cpu = smp_processor_id(); 626 tick_receive_broadcast(); 627 atomic_set(&per_cpu(tick_broadcast_count, cpu), 0); 628 } 629 630 static int __init tick_broadcast_init(void) 631 { 632 struct call_single_data *csd; 633 int cpu; 634 635 for (cpu = 0; cpu < NR_CPUS; cpu++) { 636 csd = &per_cpu(tick_broadcast_csd, cpu); 637 csd->func = tick_broadcast_callee; 638 } 639 640 return 0; 641 } 642 early_initcall(tick_broadcast_init); 643 644 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */ 645