xref: /openbmc/linux/arch/mips/kernel/smp.c (revision 56d06fa2)
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 #include <linux/irqdomain.h>
37 #include <linux/of.h>
38 #include <linux/of_irq.h>
39 
40 #include <linux/atomic.h>
41 #include <asm/cpu.h>
42 #include <asm/processor.h>
43 #include <asm/idle.h>
44 #include <asm/r4k-timer.h>
45 #include <asm/mips-cpc.h>
46 #include <asm/mmu_context.h>
47 #include <asm/time.h>
48 #include <asm/setup.h>
49 #include <asm/maar.h>
50 
51 cpumask_t cpu_callin_map;		/* Bitmask of started secondaries */
52 
53 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
54 EXPORT_SYMBOL(__cpu_number_map);
55 
56 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
57 EXPORT_SYMBOL(__cpu_logical_map);
58 
59 /* Number of TCs (or siblings in Intel speak) per CPU core */
60 int smp_num_siblings = 1;
61 EXPORT_SYMBOL(smp_num_siblings);
62 
63 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
64 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
65 EXPORT_SYMBOL(cpu_sibling_map);
66 
67 /* representing the core map of multi-core chips of each logical CPU */
68 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
69 EXPORT_SYMBOL(cpu_core_map);
70 
71 /*
72  * A logcal cpu mask containing only one VPE per core to
73  * reduce the number of IPIs on large MT systems.
74  */
75 cpumask_t cpu_foreign_map __read_mostly;
76 EXPORT_SYMBOL(cpu_foreign_map);
77 
78 /* representing cpus for which sibling maps can be computed */
79 static cpumask_t cpu_sibling_setup_map;
80 
81 /* representing cpus for which core maps can be computed */
82 static cpumask_t cpu_core_setup_map;
83 
84 cpumask_t cpu_coherent_mask;
85 
86 #ifdef CONFIG_GENERIC_IRQ_IPI
87 static struct irq_desc *call_desc;
88 static struct irq_desc *sched_desc;
89 #endif
90 
91 static inline void set_cpu_sibling_map(int cpu)
92 {
93 	int i;
94 
95 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
96 
97 	if (smp_num_siblings > 1) {
98 		for_each_cpu(i, &cpu_sibling_setup_map) {
99 			if (cpu_data[cpu].package == cpu_data[i].package &&
100 				    cpu_data[cpu].core == cpu_data[i].core) {
101 				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
102 				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
103 			}
104 		}
105 	} else
106 		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
107 }
108 
109 static inline void set_cpu_core_map(int cpu)
110 {
111 	int i;
112 
113 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
114 
115 	for_each_cpu(i, &cpu_core_setup_map) {
116 		if (cpu_data[cpu].package == cpu_data[i].package) {
117 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
118 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
119 		}
120 	}
121 }
122 
123 /*
124  * Calculate a new cpu_foreign_map mask whenever a
125  * new cpu appears or disappears.
126  */
127 static inline void calculate_cpu_foreign_map(void)
128 {
129 	int i, k, core_present;
130 	cpumask_t temp_foreign_map;
131 
132 	/* Re-calculate the mask */
133 	cpumask_clear(&temp_foreign_map);
134 	for_each_online_cpu(i) {
135 		core_present = 0;
136 		for_each_cpu(k, &temp_foreign_map)
137 			if (cpu_data[i].package == cpu_data[k].package &&
138 			    cpu_data[i].core == cpu_data[k].core)
139 				core_present = 1;
140 		if (!core_present)
141 			cpumask_set_cpu(i, &temp_foreign_map);
142 	}
143 
144 	cpumask_copy(&cpu_foreign_map, &temp_foreign_map);
145 }
146 
147 struct plat_smp_ops *mp_ops;
148 EXPORT_SYMBOL(mp_ops);
149 
150 void register_smp_ops(struct plat_smp_ops *ops)
151 {
152 	if (mp_ops)
153 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
154 
155 	mp_ops = ops;
156 }
157 
158 #ifdef CONFIG_GENERIC_IRQ_IPI
159 void mips_smp_send_ipi_single(int cpu, unsigned int action)
160 {
161 	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
162 }
163 
164 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
165 {
166 	unsigned long flags;
167 	unsigned int core;
168 	int cpu;
169 
170 	local_irq_save(flags);
171 
172 	switch (action) {
173 	case SMP_CALL_FUNCTION:
174 		__ipi_send_mask(call_desc, mask);
175 		break;
176 
177 	case SMP_RESCHEDULE_YOURSELF:
178 		__ipi_send_mask(sched_desc, mask);
179 		break;
180 
181 	default:
182 		BUG();
183 	}
184 
185 	if (mips_cpc_present()) {
186 		for_each_cpu(cpu, mask) {
187 			core = cpu_data[cpu].core;
188 
189 			if (core == current_cpu_data.core)
190 				continue;
191 
192 			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
193 				mips_cpc_lock_other(core);
194 				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
195 				mips_cpc_unlock_other();
196 			}
197 		}
198 	}
199 
200 	local_irq_restore(flags);
201 }
202 
203 
204 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
205 {
206 	scheduler_ipi();
207 
208 	return IRQ_HANDLED;
209 }
210 
211 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
212 {
213 	generic_smp_call_function_interrupt();
214 
215 	return IRQ_HANDLED;
216 }
217 
218 static struct irqaction irq_resched = {
219 	.handler	= ipi_resched_interrupt,
220 	.flags		= IRQF_PERCPU,
221 	.name		= "IPI resched"
222 };
223 
224 static struct irqaction irq_call = {
225 	.handler	= ipi_call_interrupt,
226 	.flags		= IRQF_PERCPU,
227 	.name		= "IPI call"
228 };
229 
230 static __init void smp_ipi_init_one(unsigned int virq,
231 				    struct irqaction *action)
232 {
233 	int ret;
234 
235 	irq_set_handler(virq, handle_percpu_irq);
236 	ret = setup_irq(virq, action);
237 	BUG_ON(ret);
238 }
239 
240 static int __init mips_smp_ipi_init(void)
241 {
242 	unsigned int call_virq, sched_virq;
243 	struct irq_domain *ipidomain;
244 	struct device_node *node;
245 
246 	/*
247 	 * In some cases like qemu-malta, it is desired to try SMP with
248 	 * a single core. Qemu-malta has no GIC, so an attempt to set any IPIs
249 	 * would cause a BUG_ON() to be triggered since there's no ipidomain.
250 	 *
251 	 * Since for a single core system IPIs aren't required really, skip the
252 	 * initialisation which should generally keep any such configurations
253 	 * happy and only fail hard when trying to truely run SMP.
254 	 */
255 	if (cpumask_weight(cpu_possible_mask) == 1)
256 		return 0;
257 
258 	node = of_irq_find_parent(of_root);
259 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
260 
261 	/*
262 	 * Some platforms have half DT setup. So if we found irq node but
263 	 * didn't find an ipidomain, try to search for one that is not in the
264 	 * DT.
265 	 */
266 	if (node && !ipidomain)
267 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
268 
269 	BUG_ON(!ipidomain);
270 
271 	call_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
272 	BUG_ON(!call_virq);
273 
274 	sched_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
275 	BUG_ON(!sched_virq);
276 
277 	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
278 		int cpu;
279 
280 		for_each_cpu(cpu, cpu_possible_mask) {
281 			smp_ipi_init_one(call_virq + cpu, &irq_call);
282 			smp_ipi_init_one(sched_virq + cpu, &irq_resched);
283 		}
284 	} else {
285 		smp_ipi_init_one(call_virq, &irq_call);
286 		smp_ipi_init_one(sched_virq, &irq_resched);
287 	}
288 
289 	call_desc = irq_to_desc(call_virq);
290 	sched_desc = irq_to_desc(sched_virq);
291 
292 	return 0;
293 }
294 early_initcall(mips_smp_ipi_init);
295 #endif
296 
297 /*
298  * First C code run on the secondary CPUs after being started up by
299  * the master.
300  */
301 asmlinkage void start_secondary(void)
302 {
303 	unsigned int cpu;
304 
305 	cpu_probe();
306 	per_cpu_trap_init(false);
307 	mips_clockevent_init();
308 	mp_ops->init_secondary();
309 	cpu_report();
310 	maar_init();
311 
312 	/*
313 	 * XXX parity protection should be folded in here when it's converted
314 	 * to an option instead of something based on .cputype
315 	 */
316 
317 	calibrate_delay();
318 	preempt_disable();
319 	cpu = smp_processor_id();
320 	cpu_data[cpu].udelay_val = loops_per_jiffy;
321 
322 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
323 	notify_cpu_starting(cpu);
324 
325 	set_cpu_online(cpu, true);
326 
327 	set_cpu_sibling_map(cpu);
328 	set_cpu_core_map(cpu);
329 
330 	calculate_cpu_foreign_map();
331 
332 	cpumask_set_cpu(cpu, &cpu_callin_map);
333 
334 	synchronise_count_slave(cpu);
335 
336 	/*
337 	 * irq will be enabled in ->smp_finish(), enabling it too early
338 	 * is dangerous.
339 	 */
340 	WARN_ON_ONCE(!irqs_disabled());
341 	mp_ops->smp_finish();
342 
343 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
344 }
345 
346 static void stop_this_cpu(void *dummy)
347 {
348 	/*
349 	 * Remove this CPU. Be a bit slow here and
350 	 * set the bits for every online CPU so we don't miss
351 	 * any IPI whilst taking this VPE down.
352 	 */
353 
354 	cpumask_copy(&cpu_foreign_map, cpu_online_mask);
355 
356 	/* Make it visible to every other CPU */
357 	smp_mb();
358 
359 	set_cpu_online(smp_processor_id(), false);
360 	calculate_cpu_foreign_map();
361 	local_irq_disable();
362 	while (1);
363 }
364 
365 void smp_send_stop(void)
366 {
367 	smp_call_function(stop_this_cpu, NULL, 0);
368 }
369 
370 void __init smp_cpus_done(unsigned int max_cpus)
371 {
372 }
373 
374 /* called from main before smp_init() */
375 void __init smp_prepare_cpus(unsigned int max_cpus)
376 {
377 	init_new_context(current, &init_mm);
378 	current_thread_info()->cpu = 0;
379 	mp_ops->prepare_cpus(max_cpus);
380 	set_cpu_sibling_map(0);
381 	set_cpu_core_map(0);
382 	calculate_cpu_foreign_map();
383 #ifndef CONFIG_HOTPLUG_CPU
384 	init_cpu_present(cpu_possible_mask);
385 #endif
386 	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
387 }
388 
389 /* preload SMP state for boot cpu */
390 void smp_prepare_boot_cpu(void)
391 {
392 	set_cpu_possible(0, true);
393 	set_cpu_online(0, true);
394 	cpumask_set_cpu(0, &cpu_callin_map);
395 }
396 
397 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
398 {
399 	mp_ops->boot_secondary(cpu, tidle);
400 
401 	/*
402 	 * Trust is futile.  We should really have timeouts ...
403 	 */
404 	while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
405 		udelay(100);
406 		schedule();
407 	}
408 
409 	synchronise_count_master(cpu);
410 	return 0;
411 }
412 
413 /* Not really SMP stuff ... */
414 int setup_profiling_timer(unsigned int multiplier)
415 {
416 	return 0;
417 }
418 
419 static void flush_tlb_all_ipi(void *info)
420 {
421 	local_flush_tlb_all();
422 }
423 
424 void flush_tlb_all(void)
425 {
426 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
427 }
428 
429 static void flush_tlb_mm_ipi(void *mm)
430 {
431 	local_flush_tlb_mm((struct mm_struct *)mm);
432 }
433 
434 /*
435  * Special Variant of smp_call_function for use by TLB functions:
436  *
437  *  o No return value
438  *  o collapses to normal function call on UP kernels
439  *  o collapses to normal function call on systems with a single shared
440  *    primary cache.
441  */
442 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
443 {
444 	smp_call_function(func, info, 1);
445 }
446 
447 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
448 {
449 	preempt_disable();
450 
451 	smp_on_other_tlbs(func, info);
452 	func(info);
453 
454 	preempt_enable();
455 }
456 
457 /*
458  * The following tlb flush calls are invoked when old translations are
459  * being torn down, or pte attributes are changing. For single threaded
460  * address spaces, a new context is obtained on the current cpu, and tlb
461  * context on other cpus are invalidated to force a new context allocation
462  * at switch_mm time, should the mm ever be used on other cpus. For
463  * multithreaded address spaces, intercpu interrupts have to be sent.
464  * Another case where intercpu interrupts are required is when the target
465  * mm might be active on another cpu (eg debuggers doing the flushes on
466  * behalf of debugees, kswapd stealing pages from another process etc).
467  * Kanoj 07/00.
468  */
469 
470 void flush_tlb_mm(struct mm_struct *mm)
471 {
472 	preempt_disable();
473 
474 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
475 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
476 	} else {
477 		unsigned int cpu;
478 
479 		for_each_online_cpu(cpu) {
480 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
481 				cpu_context(cpu, mm) = 0;
482 		}
483 	}
484 	local_flush_tlb_mm(mm);
485 
486 	preempt_enable();
487 }
488 
489 struct flush_tlb_data {
490 	struct vm_area_struct *vma;
491 	unsigned long addr1;
492 	unsigned long addr2;
493 };
494 
495 static void flush_tlb_range_ipi(void *info)
496 {
497 	struct flush_tlb_data *fd = info;
498 
499 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
500 }
501 
502 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
503 {
504 	struct mm_struct *mm = vma->vm_mm;
505 
506 	preempt_disable();
507 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
508 		struct flush_tlb_data fd = {
509 			.vma = vma,
510 			.addr1 = start,
511 			.addr2 = end,
512 		};
513 
514 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
515 	} else {
516 		unsigned int cpu;
517 
518 		for_each_online_cpu(cpu) {
519 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
520 				cpu_context(cpu, mm) = 0;
521 		}
522 	}
523 	local_flush_tlb_range(vma, start, end);
524 	preempt_enable();
525 }
526 
527 static void flush_tlb_kernel_range_ipi(void *info)
528 {
529 	struct flush_tlb_data *fd = info;
530 
531 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
532 }
533 
534 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
535 {
536 	struct flush_tlb_data fd = {
537 		.addr1 = start,
538 		.addr2 = end,
539 	};
540 
541 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
542 }
543 
544 static void flush_tlb_page_ipi(void *info)
545 {
546 	struct flush_tlb_data *fd = info;
547 
548 	local_flush_tlb_page(fd->vma, fd->addr1);
549 }
550 
551 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
552 {
553 	preempt_disable();
554 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
555 		struct flush_tlb_data fd = {
556 			.vma = vma,
557 			.addr1 = page,
558 		};
559 
560 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
561 	} else {
562 		unsigned int cpu;
563 
564 		for_each_online_cpu(cpu) {
565 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
566 				cpu_context(cpu, vma->vm_mm) = 0;
567 		}
568 	}
569 	local_flush_tlb_page(vma, page);
570 	preempt_enable();
571 }
572 
573 static void flush_tlb_one_ipi(void *info)
574 {
575 	unsigned long vaddr = (unsigned long) info;
576 
577 	local_flush_tlb_one(vaddr);
578 }
579 
580 void flush_tlb_one(unsigned long vaddr)
581 {
582 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
583 }
584 
585 EXPORT_SYMBOL(flush_tlb_page);
586 EXPORT_SYMBOL(flush_tlb_one);
587 
588 #if defined(CONFIG_KEXEC)
589 void (*dump_ipi_function_ptr)(void *) = NULL;
590 void dump_send_ipi(void (*dump_ipi_callback)(void *))
591 {
592 	int i;
593 	int cpu = smp_processor_id();
594 
595 	dump_ipi_function_ptr = dump_ipi_callback;
596 	smp_mb();
597 	for_each_online_cpu(i)
598 		if (i != cpu)
599 			mp_ops->send_ipi_single(i, SMP_DUMP);
600 
601 }
602 EXPORT_SYMBOL(dump_send_ipi);
603 #endif
604 
605 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
606 
607 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
608 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
609 
610 void tick_broadcast(const struct cpumask *mask)
611 {
612 	atomic_t *count;
613 	struct call_single_data *csd;
614 	int cpu;
615 
616 	for_each_cpu(cpu, mask) {
617 		count = &per_cpu(tick_broadcast_count, cpu);
618 		csd = &per_cpu(tick_broadcast_csd, cpu);
619 
620 		if (atomic_inc_return(count) == 1)
621 			smp_call_function_single_async(cpu, csd);
622 	}
623 }
624 
625 static void tick_broadcast_callee(void *info)
626 {
627 	int cpu = smp_processor_id();
628 	tick_receive_broadcast();
629 	atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
630 }
631 
632 static int __init tick_broadcast_init(void)
633 {
634 	struct call_single_data *csd;
635 	int cpu;
636 
637 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
638 		csd = &per_cpu(tick_broadcast_csd, cpu);
639 		csd->func = tick_broadcast_callee;
640 	}
641 
642 	return 0;
643 }
644 early_initcall(tick_broadcast_init);
645 
646 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
647