1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 2 5 * of the License, or (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 * 16 * Copyright (C) 2000, 2001 Kanoj Sarcar 17 * Copyright (C) 2000, 2001 Ralf Baechle 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc. 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation 20 */ 21 #include <linux/cache.h> 22 #include <linux/delay.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/spinlock.h> 26 #include <linux/threads.h> 27 #include <linux/module.h> 28 #include <linux/time.h> 29 #include <linux/timex.h> 30 #include <linux/sched.h> 31 #include <linux/cpumask.h> 32 #include <linux/cpu.h> 33 #include <linux/err.h> 34 35 #include <asm/atomic.h> 36 #include <asm/cpu.h> 37 #include <asm/processor.h> 38 #include <asm/r4k-timer.h> 39 #include <asm/system.h> 40 #include <asm/mmu_context.h> 41 #include <asm/time.h> 42 43 #ifdef CONFIG_MIPS_MT_SMTC 44 #include <asm/mipsmtregs.h> 45 #endif /* CONFIG_MIPS_MT_SMTC */ 46 47 cpumask_t phys_cpu_present_map; /* Bitmask of available CPUs */ 48 volatile cpumask_t cpu_callin_map; /* Bitmask of started secondaries */ 49 cpumask_t cpu_online_map; /* Bitmask of currently online CPUs */ 50 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ 51 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ 52 53 EXPORT_SYMBOL(phys_cpu_present_map); 54 EXPORT_SYMBOL(cpu_online_map); 55 56 extern void cpu_idle(void); 57 58 /* Number of TCs (or siblings in Intel speak) per CPU core */ 59 int smp_num_siblings = 1; 60 EXPORT_SYMBOL(smp_num_siblings); 61 62 /* representing the TCs (or siblings in Intel speak) of each logical CPU */ 63 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; 64 EXPORT_SYMBOL(cpu_sibling_map); 65 66 /* representing cpus for which sibling maps can be computed */ 67 static cpumask_t cpu_sibling_setup_map; 68 69 static inline void set_cpu_sibling_map(int cpu) 70 { 71 int i; 72 73 cpu_set(cpu, cpu_sibling_setup_map); 74 75 if (smp_num_siblings > 1) { 76 for_each_cpu_mask(i, cpu_sibling_setup_map) { 77 if (cpu_data[cpu].core == cpu_data[i].core) { 78 cpu_set(i, cpu_sibling_map[cpu]); 79 cpu_set(cpu, cpu_sibling_map[i]); 80 } 81 } 82 } else 83 cpu_set(cpu, cpu_sibling_map[cpu]); 84 } 85 86 struct plat_smp_ops *mp_ops; 87 88 __cpuinit void register_smp_ops(struct plat_smp_ops *ops) 89 { 90 if (mp_ops) 91 printk(KERN_WARNING "Overriding previously set SMP ops\n"); 92 93 mp_ops = ops; 94 } 95 96 /* 97 * First C code run on the secondary CPUs after being started up by 98 * the master. 99 */ 100 asmlinkage __cpuinit void start_secondary(void) 101 { 102 unsigned int cpu; 103 104 #ifdef CONFIG_MIPS_MT_SMTC 105 /* Only do cpu_probe for first TC of CPU */ 106 if ((read_c0_tcbind() & TCBIND_CURTC) == 0) 107 #endif /* CONFIG_MIPS_MT_SMTC */ 108 cpu_probe(); 109 cpu_report(); 110 per_cpu_trap_init(); 111 mips_clockevent_init(); 112 mp_ops->init_secondary(); 113 114 /* 115 * XXX parity protection should be folded in here when it's converted 116 * to an option instead of something based on .cputype 117 */ 118 119 calibrate_delay(); 120 preempt_disable(); 121 cpu = smp_processor_id(); 122 cpu_data[cpu].udelay_val = loops_per_jiffy; 123 124 mp_ops->smp_finish(); 125 set_cpu_sibling_map(cpu); 126 127 cpu_set(cpu, cpu_callin_map); 128 129 synchronise_count_slave(); 130 131 cpu_idle(); 132 } 133 134 void arch_send_call_function_ipi(cpumask_t mask) 135 { 136 mp_ops->send_ipi_mask(mask, SMP_CALL_FUNCTION); 137 } 138 139 /* 140 * We reuse the same vector for the single IPI 141 */ 142 void arch_send_call_function_single_ipi(int cpu) 143 { 144 mp_ops->send_ipi_mask(cpumask_of_cpu(cpu), SMP_CALL_FUNCTION); 145 } 146 147 /* 148 * Call into both interrupt handlers, as we share the IPI for them 149 */ 150 void smp_call_function_interrupt(void) 151 { 152 irq_enter(); 153 generic_smp_call_function_single_interrupt(); 154 generic_smp_call_function_interrupt(); 155 irq_exit(); 156 } 157 158 static void stop_this_cpu(void *dummy) 159 { 160 /* 161 * Remove this CPU: 162 */ 163 cpu_clear(smp_processor_id(), cpu_online_map); 164 local_irq_enable(); /* May need to service _machine_restart IPI */ 165 for (;;); /* Wait if available. */ 166 } 167 168 void smp_send_stop(void) 169 { 170 smp_call_function(stop_this_cpu, NULL, 0); 171 } 172 173 void __init smp_cpus_done(unsigned int max_cpus) 174 { 175 mp_ops->cpus_done(); 176 synchronise_count_master(); 177 } 178 179 /* called from main before smp_init() */ 180 void __init smp_prepare_cpus(unsigned int max_cpus) 181 { 182 init_new_context(current, &init_mm); 183 current_thread_info()->cpu = 0; 184 mp_ops->prepare_cpus(max_cpus); 185 set_cpu_sibling_map(0); 186 #ifndef CONFIG_HOTPLUG_CPU 187 cpu_present_map = cpu_possible_map; 188 #endif 189 } 190 191 /* preload SMP state for boot cpu */ 192 void __devinit smp_prepare_boot_cpu(void) 193 { 194 /* 195 * This assumes that bootup is always handled by the processor 196 * with the logic and physical number 0. 197 */ 198 __cpu_number_map[0] = 0; 199 __cpu_logical_map[0] = 0; 200 cpu_set(0, phys_cpu_present_map); 201 cpu_set(0, cpu_online_map); 202 cpu_set(0, cpu_callin_map); 203 } 204 205 /* 206 * Called once for each "cpu_possible(cpu)". Needs to spin up the cpu 207 * and keep control until "cpu_online(cpu)" is set. Note: cpu is 208 * physical, not logical. 209 */ 210 int __cpuinit __cpu_up(unsigned int cpu) 211 { 212 struct task_struct *idle; 213 214 /* 215 * Processor goes to start_secondary(), sets online flag 216 * The following code is purely to make sure 217 * Linux can schedule processes on this slave. 218 */ 219 idle = fork_idle(cpu); 220 if (IS_ERR(idle)) 221 panic(KERN_ERR "Fork failed for CPU %d", cpu); 222 223 mp_ops->boot_secondary(cpu, idle); 224 225 /* 226 * Trust is futile. We should really have timeouts ... 227 */ 228 while (!cpu_isset(cpu, cpu_callin_map)) 229 udelay(100); 230 231 cpu_set(cpu, cpu_online_map); 232 233 return 0; 234 } 235 236 /* Not really SMP stuff ... */ 237 int setup_profiling_timer(unsigned int multiplier) 238 { 239 return 0; 240 } 241 242 static void flush_tlb_all_ipi(void *info) 243 { 244 local_flush_tlb_all(); 245 } 246 247 void flush_tlb_all(void) 248 { 249 on_each_cpu(flush_tlb_all_ipi, NULL, 1); 250 } 251 252 static void flush_tlb_mm_ipi(void *mm) 253 { 254 local_flush_tlb_mm((struct mm_struct *)mm); 255 } 256 257 /* 258 * Special Variant of smp_call_function for use by TLB functions: 259 * 260 * o No return value 261 * o collapses to normal function call on UP kernels 262 * o collapses to normal function call on systems with a single shared 263 * primary cache. 264 * o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core. 265 */ 266 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) 267 { 268 #ifndef CONFIG_MIPS_MT_SMTC 269 smp_call_function(func, info, 1); 270 #endif 271 } 272 273 static inline void smp_on_each_tlb(void (*func) (void *info), void *info) 274 { 275 preempt_disable(); 276 277 smp_on_other_tlbs(func, info); 278 func(info); 279 280 preempt_enable(); 281 } 282 283 /* 284 * The following tlb flush calls are invoked when old translations are 285 * being torn down, or pte attributes are changing. For single threaded 286 * address spaces, a new context is obtained on the current cpu, and tlb 287 * context on other cpus are invalidated to force a new context allocation 288 * at switch_mm time, should the mm ever be used on other cpus. For 289 * multithreaded address spaces, intercpu interrupts have to be sent. 290 * Another case where intercpu interrupts are required is when the target 291 * mm might be active on another cpu (eg debuggers doing the flushes on 292 * behalf of debugees, kswapd stealing pages from another process etc). 293 * Kanoj 07/00. 294 */ 295 296 void flush_tlb_mm(struct mm_struct *mm) 297 { 298 preempt_disable(); 299 300 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 301 smp_on_other_tlbs(flush_tlb_mm_ipi, mm); 302 } else { 303 cpumask_t mask = cpu_online_map; 304 unsigned int cpu; 305 306 cpu_clear(smp_processor_id(), mask); 307 for_each_cpu_mask(cpu, mask) 308 if (cpu_context(cpu, mm)) 309 cpu_context(cpu, mm) = 0; 310 } 311 local_flush_tlb_mm(mm); 312 313 preempt_enable(); 314 } 315 316 struct flush_tlb_data { 317 struct vm_area_struct *vma; 318 unsigned long addr1; 319 unsigned long addr2; 320 }; 321 322 static void flush_tlb_range_ipi(void *info) 323 { 324 struct flush_tlb_data *fd = info; 325 326 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); 327 } 328 329 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 330 { 331 struct mm_struct *mm = vma->vm_mm; 332 333 preempt_disable(); 334 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { 335 struct flush_tlb_data fd = { 336 .vma = vma, 337 .addr1 = start, 338 .addr2 = end, 339 }; 340 341 smp_on_other_tlbs(flush_tlb_range_ipi, &fd); 342 } else { 343 cpumask_t mask = cpu_online_map; 344 unsigned int cpu; 345 346 cpu_clear(smp_processor_id(), mask); 347 for_each_cpu_mask(cpu, mask) 348 if (cpu_context(cpu, mm)) 349 cpu_context(cpu, mm) = 0; 350 } 351 local_flush_tlb_range(vma, start, end); 352 preempt_enable(); 353 } 354 355 static void flush_tlb_kernel_range_ipi(void *info) 356 { 357 struct flush_tlb_data *fd = info; 358 359 local_flush_tlb_kernel_range(fd->addr1, fd->addr2); 360 } 361 362 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 363 { 364 struct flush_tlb_data fd = { 365 .addr1 = start, 366 .addr2 = end, 367 }; 368 369 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); 370 } 371 372 static void flush_tlb_page_ipi(void *info) 373 { 374 struct flush_tlb_data *fd = info; 375 376 local_flush_tlb_page(fd->vma, fd->addr1); 377 } 378 379 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) 380 { 381 preempt_disable(); 382 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { 383 struct flush_tlb_data fd = { 384 .vma = vma, 385 .addr1 = page, 386 }; 387 388 smp_on_other_tlbs(flush_tlb_page_ipi, &fd); 389 } else { 390 cpumask_t mask = cpu_online_map; 391 unsigned int cpu; 392 393 cpu_clear(smp_processor_id(), mask); 394 for_each_cpu_mask(cpu, mask) 395 if (cpu_context(cpu, vma->vm_mm)) 396 cpu_context(cpu, vma->vm_mm) = 0; 397 } 398 local_flush_tlb_page(vma, page); 399 preempt_enable(); 400 } 401 402 static void flush_tlb_one_ipi(void *info) 403 { 404 unsigned long vaddr = (unsigned long) info; 405 406 local_flush_tlb_one(vaddr); 407 } 408 409 void flush_tlb_one(unsigned long vaddr) 410 { 411 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); 412 } 413 414 EXPORT_SYMBOL(flush_tlb_page); 415 EXPORT_SYMBOL(flush_tlb_one); 416