xref: /openbmc/linux/arch/mips/kernel/smp.c (revision 4da722ca)
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/export.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched/mm.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 #include <linux/irqdomain.h>
37 #include <linux/of.h>
38 #include <linux/of_irq.h>
39 
40 #include <linux/atomic.h>
41 #include <asm/cpu.h>
42 #include <asm/processor.h>
43 #include <asm/idle.h>
44 #include <asm/r4k-timer.h>
45 #include <asm/mips-cpc.h>
46 #include <asm/mmu_context.h>
47 #include <asm/time.h>
48 #include <asm/setup.h>
49 #include <asm/maar.h>
50 
51 int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
52 EXPORT_SYMBOL(__cpu_number_map);
53 
54 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
55 EXPORT_SYMBOL(__cpu_logical_map);
56 
57 /* Number of TCs (or siblings in Intel speak) per CPU core */
58 int smp_num_siblings = 1;
59 EXPORT_SYMBOL(smp_num_siblings);
60 
61 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
62 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
63 EXPORT_SYMBOL(cpu_sibling_map);
64 
65 /* representing the core map of multi-core chips of each logical CPU */
66 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
67 EXPORT_SYMBOL(cpu_core_map);
68 
69 static DECLARE_COMPLETION(cpu_running);
70 
71 /*
72  * A logcal cpu mask containing only one VPE per core to
73  * reduce the number of IPIs on large MT systems.
74  */
75 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
76 EXPORT_SYMBOL(cpu_foreign_map);
77 
78 /* representing cpus for which sibling maps can be computed */
79 static cpumask_t cpu_sibling_setup_map;
80 
81 /* representing cpus for which core maps can be computed */
82 static cpumask_t cpu_core_setup_map;
83 
84 cpumask_t cpu_coherent_mask;
85 
86 #ifdef CONFIG_GENERIC_IRQ_IPI
87 static struct irq_desc *call_desc;
88 static struct irq_desc *sched_desc;
89 #endif
90 
91 static inline void set_cpu_sibling_map(int cpu)
92 {
93 	int i;
94 
95 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
96 
97 	if (smp_num_siblings > 1) {
98 		for_each_cpu(i, &cpu_sibling_setup_map) {
99 			if (cpu_data[cpu].package == cpu_data[i].package &&
100 				    cpu_data[cpu].core == cpu_data[i].core) {
101 				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
102 				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
103 			}
104 		}
105 	} else
106 		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
107 }
108 
109 static inline void set_cpu_core_map(int cpu)
110 {
111 	int i;
112 
113 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
114 
115 	for_each_cpu(i, &cpu_core_setup_map) {
116 		if (cpu_data[cpu].package == cpu_data[i].package) {
117 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
118 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
119 		}
120 	}
121 }
122 
123 /*
124  * Calculate a new cpu_foreign_map mask whenever a
125  * new cpu appears or disappears.
126  */
127 void calculate_cpu_foreign_map(void)
128 {
129 	int i, k, core_present;
130 	cpumask_t temp_foreign_map;
131 
132 	/* Re-calculate the mask */
133 	cpumask_clear(&temp_foreign_map);
134 	for_each_online_cpu(i) {
135 		core_present = 0;
136 		for_each_cpu(k, &temp_foreign_map)
137 			if (cpu_data[i].package == cpu_data[k].package &&
138 			    cpu_data[i].core == cpu_data[k].core)
139 				core_present = 1;
140 		if (!core_present)
141 			cpumask_set_cpu(i, &temp_foreign_map);
142 	}
143 
144 	for_each_online_cpu(i)
145 		cpumask_andnot(&cpu_foreign_map[i],
146 			       &temp_foreign_map, &cpu_sibling_map[i]);
147 }
148 
149 struct plat_smp_ops *mp_ops;
150 EXPORT_SYMBOL(mp_ops);
151 
152 void register_smp_ops(struct plat_smp_ops *ops)
153 {
154 	if (mp_ops)
155 		printk(KERN_WARNING "Overriding previously set SMP ops\n");
156 
157 	mp_ops = ops;
158 }
159 
160 #ifdef CONFIG_GENERIC_IRQ_IPI
161 void mips_smp_send_ipi_single(int cpu, unsigned int action)
162 {
163 	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
164 }
165 
166 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
167 {
168 	unsigned long flags;
169 	unsigned int core;
170 	int cpu;
171 
172 	local_irq_save(flags);
173 
174 	switch (action) {
175 	case SMP_CALL_FUNCTION:
176 		__ipi_send_mask(call_desc, mask);
177 		break;
178 
179 	case SMP_RESCHEDULE_YOURSELF:
180 		__ipi_send_mask(sched_desc, mask);
181 		break;
182 
183 	default:
184 		BUG();
185 	}
186 
187 	if (mips_cpc_present()) {
188 		for_each_cpu(cpu, mask) {
189 			core = cpu_data[cpu].core;
190 
191 			if (core == current_cpu_data.core)
192 				continue;
193 
194 			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
195 				mips_cm_lock_other(core, 0);
196 				mips_cpc_lock_other(core);
197 				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
198 				mips_cpc_unlock_other();
199 				mips_cm_unlock_other();
200 			}
201 		}
202 	}
203 
204 	local_irq_restore(flags);
205 }
206 
207 
208 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
209 {
210 	scheduler_ipi();
211 
212 	return IRQ_HANDLED;
213 }
214 
215 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
216 {
217 	generic_smp_call_function_interrupt();
218 
219 	return IRQ_HANDLED;
220 }
221 
222 static struct irqaction irq_resched = {
223 	.handler	= ipi_resched_interrupt,
224 	.flags		= IRQF_PERCPU,
225 	.name		= "IPI resched"
226 };
227 
228 static struct irqaction irq_call = {
229 	.handler	= ipi_call_interrupt,
230 	.flags		= IRQF_PERCPU,
231 	.name		= "IPI call"
232 };
233 
234 static void smp_ipi_init_one(unsigned int virq,
235 				    struct irqaction *action)
236 {
237 	int ret;
238 
239 	irq_set_handler(virq, handle_percpu_irq);
240 	ret = setup_irq(virq, action);
241 	BUG_ON(ret);
242 }
243 
244 static unsigned int call_virq, sched_virq;
245 
246 int mips_smp_ipi_allocate(const struct cpumask *mask)
247 {
248 	int virq;
249 	struct irq_domain *ipidomain;
250 	struct device_node *node;
251 
252 	node = of_irq_find_parent(of_root);
253 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
254 
255 	/*
256 	 * Some platforms have half DT setup. So if we found irq node but
257 	 * didn't find an ipidomain, try to search for one that is not in the
258 	 * DT.
259 	 */
260 	if (node && !ipidomain)
261 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
262 
263 	/*
264 	 * There are systems which use IPI IRQ domains, but only have one
265 	 * registered when some runtime condition is met. For example a Malta
266 	 * kernel may include support for GIC & CPU interrupt controller IPI
267 	 * IRQ domains, but if run on a system with no GIC & no MT ASE then
268 	 * neither will be supported or registered.
269 	 *
270 	 * We only have a problem if we're actually using multiple CPUs so fail
271 	 * loudly if that is the case. Otherwise simply return, skipping IPI
272 	 * setup, if we're running with only a single CPU.
273 	 */
274 	if (!ipidomain) {
275 		BUG_ON(num_present_cpus() > 1);
276 		return 0;
277 	}
278 
279 	virq = irq_reserve_ipi(ipidomain, mask);
280 	BUG_ON(!virq);
281 	if (!call_virq)
282 		call_virq = virq;
283 
284 	virq = irq_reserve_ipi(ipidomain, mask);
285 	BUG_ON(!virq);
286 	if (!sched_virq)
287 		sched_virq = virq;
288 
289 	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
290 		int cpu;
291 
292 		for_each_cpu(cpu, mask) {
293 			smp_ipi_init_one(call_virq + cpu, &irq_call);
294 			smp_ipi_init_one(sched_virq + cpu, &irq_resched);
295 		}
296 	} else {
297 		smp_ipi_init_one(call_virq, &irq_call);
298 		smp_ipi_init_one(sched_virq, &irq_resched);
299 	}
300 
301 	return 0;
302 }
303 
304 int mips_smp_ipi_free(const struct cpumask *mask)
305 {
306 	struct irq_domain *ipidomain;
307 	struct device_node *node;
308 
309 	node = of_irq_find_parent(of_root);
310 	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
311 
312 	/*
313 	 * Some platforms have half DT setup. So if we found irq node but
314 	 * didn't find an ipidomain, try to search for one that is not in the
315 	 * DT.
316 	 */
317 	if (node && !ipidomain)
318 		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
319 
320 	BUG_ON(!ipidomain);
321 
322 	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
323 		int cpu;
324 
325 		for_each_cpu(cpu, mask) {
326 			remove_irq(call_virq + cpu, &irq_call);
327 			remove_irq(sched_virq + cpu, &irq_resched);
328 		}
329 	}
330 	irq_destroy_ipi(call_virq, mask);
331 	irq_destroy_ipi(sched_virq, mask);
332 	return 0;
333 }
334 
335 
336 static int __init mips_smp_ipi_init(void)
337 {
338 	if (num_possible_cpus() == 1)
339 		return 0;
340 
341 	mips_smp_ipi_allocate(cpu_possible_mask);
342 
343 	call_desc = irq_to_desc(call_virq);
344 	sched_desc = irq_to_desc(sched_virq);
345 
346 	return 0;
347 }
348 early_initcall(mips_smp_ipi_init);
349 #endif
350 
351 /*
352  * First C code run on the secondary CPUs after being started up by
353  * the master.
354  */
355 asmlinkage void start_secondary(void)
356 {
357 	unsigned int cpu;
358 
359 	cpu_probe();
360 	per_cpu_trap_init(false);
361 	mips_clockevent_init();
362 	mp_ops->init_secondary();
363 	cpu_report();
364 	maar_init();
365 
366 	/*
367 	 * XXX parity protection should be folded in here when it's converted
368 	 * to an option instead of something based on .cputype
369 	 */
370 
371 	calibrate_delay();
372 	preempt_disable();
373 	cpu = smp_processor_id();
374 	cpu_data[cpu].udelay_val = loops_per_jiffy;
375 
376 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
377 	notify_cpu_starting(cpu);
378 
379 	complete(&cpu_running);
380 	synchronise_count_slave(cpu);
381 
382 	set_cpu_online(cpu, true);
383 
384 	set_cpu_sibling_map(cpu);
385 	set_cpu_core_map(cpu);
386 
387 	calculate_cpu_foreign_map();
388 
389 	/*
390 	 * irq will be enabled in ->smp_finish(), enabling it too early
391 	 * is dangerous.
392 	 */
393 	WARN_ON_ONCE(!irqs_disabled());
394 	mp_ops->smp_finish();
395 
396 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
397 }
398 
399 static void stop_this_cpu(void *dummy)
400 {
401 	/*
402 	 * Remove this CPU:
403 	 */
404 
405 	set_cpu_online(smp_processor_id(), false);
406 	calculate_cpu_foreign_map();
407 	local_irq_disable();
408 	while (1);
409 }
410 
411 void smp_send_stop(void)
412 {
413 	smp_call_function(stop_this_cpu, NULL, 0);
414 }
415 
416 void __init smp_cpus_done(unsigned int max_cpus)
417 {
418 }
419 
420 /* called from main before smp_init() */
421 void __init smp_prepare_cpus(unsigned int max_cpus)
422 {
423 	init_new_context(current, &init_mm);
424 	current_thread_info()->cpu = 0;
425 	mp_ops->prepare_cpus(max_cpus);
426 	set_cpu_sibling_map(0);
427 	set_cpu_core_map(0);
428 	calculate_cpu_foreign_map();
429 #ifndef CONFIG_HOTPLUG_CPU
430 	init_cpu_present(cpu_possible_mask);
431 #endif
432 	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
433 }
434 
435 /* preload SMP state for boot cpu */
436 void smp_prepare_boot_cpu(void)
437 {
438 	set_cpu_possible(0, true);
439 	set_cpu_online(0, true);
440 }
441 
442 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
443 {
444 	mp_ops->boot_secondary(cpu, tidle);
445 
446 	/*
447 	 * We must check for timeout here, as the CPU will not be marked
448 	 * online until the counters are synchronised.
449 	 */
450 	if (!wait_for_completion_timeout(&cpu_running,
451 					 msecs_to_jiffies(1000))) {
452 		pr_crit("CPU%u: failed to start\n", cpu);
453 		return -EIO;
454 	}
455 
456 	synchronise_count_master(cpu);
457 	return 0;
458 }
459 
460 /* Not really SMP stuff ... */
461 int setup_profiling_timer(unsigned int multiplier)
462 {
463 	return 0;
464 }
465 
466 static void flush_tlb_all_ipi(void *info)
467 {
468 	local_flush_tlb_all();
469 }
470 
471 void flush_tlb_all(void)
472 {
473 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
474 }
475 
476 static void flush_tlb_mm_ipi(void *mm)
477 {
478 	local_flush_tlb_mm((struct mm_struct *)mm);
479 }
480 
481 /*
482  * Special Variant of smp_call_function for use by TLB functions:
483  *
484  *  o No return value
485  *  o collapses to normal function call on UP kernels
486  *  o collapses to normal function call on systems with a single shared
487  *    primary cache.
488  */
489 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
490 {
491 	smp_call_function(func, info, 1);
492 }
493 
494 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
495 {
496 	preempt_disable();
497 
498 	smp_on_other_tlbs(func, info);
499 	func(info);
500 
501 	preempt_enable();
502 }
503 
504 /*
505  * The following tlb flush calls are invoked when old translations are
506  * being torn down, or pte attributes are changing. For single threaded
507  * address spaces, a new context is obtained on the current cpu, and tlb
508  * context on other cpus are invalidated to force a new context allocation
509  * at switch_mm time, should the mm ever be used on other cpus. For
510  * multithreaded address spaces, intercpu interrupts have to be sent.
511  * Another case where intercpu interrupts are required is when the target
512  * mm might be active on another cpu (eg debuggers doing the flushes on
513  * behalf of debugees, kswapd stealing pages from another process etc).
514  * Kanoj 07/00.
515  */
516 
517 void flush_tlb_mm(struct mm_struct *mm)
518 {
519 	preempt_disable();
520 
521 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
522 		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
523 	} else {
524 		unsigned int cpu;
525 
526 		for_each_online_cpu(cpu) {
527 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
528 				cpu_context(cpu, mm) = 0;
529 		}
530 	}
531 	local_flush_tlb_mm(mm);
532 
533 	preempt_enable();
534 }
535 
536 struct flush_tlb_data {
537 	struct vm_area_struct *vma;
538 	unsigned long addr1;
539 	unsigned long addr2;
540 };
541 
542 static void flush_tlb_range_ipi(void *info)
543 {
544 	struct flush_tlb_data *fd = info;
545 
546 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
547 }
548 
549 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
550 {
551 	struct mm_struct *mm = vma->vm_mm;
552 
553 	preempt_disable();
554 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
555 		struct flush_tlb_data fd = {
556 			.vma = vma,
557 			.addr1 = start,
558 			.addr2 = end,
559 		};
560 
561 		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
562 	} else {
563 		unsigned int cpu;
564 		int exec = vma->vm_flags & VM_EXEC;
565 
566 		for_each_online_cpu(cpu) {
567 			/*
568 			 * flush_cache_range() will only fully flush icache if
569 			 * the VMA is executable, otherwise we must invalidate
570 			 * ASID without it appearing to has_valid_asid() as if
571 			 * mm has been completely unused by that CPU.
572 			 */
573 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
574 				cpu_context(cpu, mm) = !exec;
575 		}
576 	}
577 	local_flush_tlb_range(vma, start, end);
578 	preempt_enable();
579 }
580 
581 static void flush_tlb_kernel_range_ipi(void *info)
582 {
583 	struct flush_tlb_data *fd = info;
584 
585 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
586 }
587 
588 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
589 {
590 	struct flush_tlb_data fd = {
591 		.addr1 = start,
592 		.addr2 = end,
593 	};
594 
595 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
596 }
597 
598 static void flush_tlb_page_ipi(void *info)
599 {
600 	struct flush_tlb_data *fd = info;
601 
602 	local_flush_tlb_page(fd->vma, fd->addr1);
603 }
604 
605 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
606 {
607 	preempt_disable();
608 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
609 		struct flush_tlb_data fd = {
610 			.vma = vma,
611 			.addr1 = page,
612 		};
613 
614 		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
615 	} else {
616 		unsigned int cpu;
617 
618 		for_each_online_cpu(cpu) {
619 			/*
620 			 * flush_cache_page() only does partial flushes, so
621 			 * invalidate ASID without it appearing to
622 			 * has_valid_asid() as if mm has been completely unused
623 			 * by that CPU.
624 			 */
625 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
626 				cpu_context(cpu, vma->vm_mm) = 1;
627 		}
628 	}
629 	local_flush_tlb_page(vma, page);
630 	preempt_enable();
631 }
632 
633 static void flush_tlb_one_ipi(void *info)
634 {
635 	unsigned long vaddr = (unsigned long) info;
636 
637 	local_flush_tlb_one(vaddr);
638 }
639 
640 void flush_tlb_one(unsigned long vaddr)
641 {
642 	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
643 }
644 
645 EXPORT_SYMBOL(flush_tlb_page);
646 EXPORT_SYMBOL(flush_tlb_one);
647 
648 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
649 
650 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
651 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
652 
653 void tick_broadcast(const struct cpumask *mask)
654 {
655 	atomic_t *count;
656 	struct call_single_data *csd;
657 	int cpu;
658 
659 	for_each_cpu(cpu, mask) {
660 		count = &per_cpu(tick_broadcast_count, cpu);
661 		csd = &per_cpu(tick_broadcast_csd, cpu);
662 
663 		if (atomic_inc_return(count) == 1)
664 			smp_call_function_single_async(cpu, csd);
665 	}
666 }
667 
668 static void tick_broadcast_callee(void *info)
669 {
670 	int cpu = smp_processor_id();
671 	tick_receive_broadcast();
672 	atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
673 }
674 
675 static int __init tick_broadcast_init(void)
676 {
677 	struct call_single_data *csd;
678 	int cpu;
679 
680 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
681 		csd = &per_cpu(tick_broadcast_csd, cpu);
682 		csd->func = tick_broadcast_callee;
683 	}
684 
685 	return 0;
686 }
687 early_initcall(tick_broadcast_init);
688 
689 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
690