xref: /openbmc/linux/arch/mips/kernel/smp-cps.c (revision eb3fcf00)
1 /*
2  * Copyright (C) 2013 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10 
11 #include <linux/io.h>
12 #include <linux/irqchip/mips-gic.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/smp.h>
16 #include <linux/types.h>
17 
18 #include <asm/bcache.h>
19 #include <asm/mips-cm.h>
20 #include <asm/mips-cpc.h>
21 #include <asm/mips_mt.h>
22 #include <asm/mipsregs.h>
23 #include <asm/pm-cps.h>
24 #include <asm/r4kcache.h>
25 #include <asm/smp-cps.h>
26 #include <asm/time.h>
27 #include <asm/uasm.h>
28 
29 static DECLARE_BITMAP(core_power, NR_CPUS);
30 
31 struct core_boot_config *mips_cps_core_bootcfg;
32 
33 static unsigned core_vpe_count(unsigned core)
34 {
35 	unsigned cfg;
36 
37 	if (!config_enabled(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
38 		return 1;
39 
40 	write_gcr_cl_other(core << CM_GCR_Cx_OTHER_CORENUM_SHF);
41 	cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
42 	return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
43 }
44 
45 static void __init cps_smp_setup(void)
46 {
47 	unsigned int ncores, nvpes, core_vpes;
48 	int c, v;
49 
50 	/* Detect & record VPE topology */
51 	ncores = mips_cm_numcores();
52 	pr_info("VPE topology ");
53 	for (c = nvpes = 0; c < ncores; c++) {
54 		core_vpes = core_vpe_count(c);
55 		pr_cont("%c%u", c ? ',' : '{', core_vpes);
56 
57 		/* Use the number of VPEs in core 0 for smp_num_siblings */
58 		if (!c)
59 			smp_num_siblings = core_vpes;
60 
61 		for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
62 			cpu_data[nvpes + v].core = c;
63 #ifdef CONFIG_MIPS_MT_SMP
64 			cpu_data[nvpes + v].vpe_id = v;
65 #endif
66 		}
67 
68 		nvpes += core_vpes;
69 	}
70 	pr_cont("} total %u\n", nvpes);
71 
72 	/* Indicate present CPUs (CPU being synonymous with VPE) */
73 	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
74 		set_cpu_possible(v, true);
75 		set_cpu_present(v, true);
76 		__cpu_number_map[v] = v;
77 		__cpu_logical_map[v] = v;
78 	}
79 
80 	/* Set a coherent default CCA (CWB) */
81 	change_c0_config(CONF_CM_CMASK, 0x5);
82 
83 	/* Core 0 is powered up (we're running on it) */
84 	bitmap_set(core_power, 0, 1);
85 
86 	/* Initialise core 0 */
87 	mips_cps_core_init();
88 
89 	/* Make core 0 coherent with everything */
90 	write_gcr_cl_coherence(0xff);
91 
92 #ifdef CONFIG_MIPS_MT_FPAFF
93 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
94 	if (cpu_has_fpu)
95 		cpumask_set_cpu(0, &mt_fpu_cpumask);
96 #endif /* CONFIG_MIPS_MT_FPAFF */
97 }
98 
99 static void __init cps_prepare_cpus(unsigned int max_cpus)
100 {
101 	unsigned ncores, core_vpes, c, cca;
102 	bool cca_unsuitable;
103 	u32 *entry_code;
104 
105 	mips_mt_set_cpuoptions();
106 
107 	/* Detect whether the CCA is unsuited to multi-core SMP */
108 	cca = read_c0_config() & CONF_CM_CMASK;
109 	switch (cca) {
110 	case 0x4: /* CWBE */
111 	case 0x5: /* CWB */
112 		/* The CCA is coherent, multi-core is fine */
113 		cca_unsuitable = false;
114 		break;
115 
116 	default:
117 		/* CCA is not coherent, multi-core is not usable */
118 		cca_unsuitable = true;
119 	}
120 
121 	/* Warn the user if the CCA prevents multi-core */
122 	ncores = mips_cm_numcores();
123 	if (cca_unsuitable && ncores > 1) {
124 		pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
125 			cca);
126 
127 		for_each_present_cpu(c) {
128 			if (cpu_data[c].core)
129 				set_cpu_present(c, false);
130 		}
131 	}
132 
133 	/*
134 	 * Patch the start of mips_cps_core_entry to provide:
135 	 *
136 	 * v1 = CM base address
137 	 * s0 = kseg0 CCA
138 	 */
139 	entry_code = (u32 *)&mips_cps_core_entry;
140 	UASM_i_LA(&entry_code, 3, (long)mips_cm_base);
141 	uasm_i_addiu(&entry_code, 16, 0, cca);
142 	blast_dcache_range((unsigned long)&mips_cps_core_entry,
143 			   (unsigned long)entry_code);
144 	bc_wback_inv((unsigned long)&mips_cps_core_entry,
145 		     (void *)entry_code - (void *)&mips_cps_core_entry);
146 	__sync();
147 
148 	/* Allocate core boot configuration structs */
149 	mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
150 					GFP_KERNEL);
151 	if (!mips_cps_core_bootcfg) {
152 		pr_err("Failed to allocate boot config for %u cores\n", ncores);
153 		goto err_out;
154 	}
155 
156 	/* Allocate VPE boot configuration structs */
157 	for (c = 0; c < ncores; c++) {
158 		core_vpes = core_vpe_count(c);
159 		mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
160 				sizeof(*mips_cps_core_bootcfg[c].vpe_config),
161 				GFP_KERNEL);
162 		if (!mips_cps_core_bootcfg[c].vpe_config) {
163 			pr_err("Failed to allocate %u VPE boot configs\n",
164 			       core_vpes);
165 			goto err_out;
166 		}
167 	}
168 
169 	/* Mark this CPU as booted */
170 	atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
171 		   1 << cpu_vpe_id(&current_cpu_data));
172 
173 	return;
174 err_out:
175 	/* Clean up allocations */
176 	if (mips_cps_core_bootcfg) {
177 		for (c = 0; c < ncores; c++)
178 			kfree(mips_cps_core_bootcfg[c].vpe_config);
179 		kfree(mips_cps_core_bootcfg);
180 		mips_cps_core_bootcfg = NULL;
181 	}
182 
183 	/* Effectively disable SMP by declaring CPUs not present */
184 	for_each_possible_cpu(c) {
185 		if (c == 0)
186 			continue;
187 		set_cpu_present(c, false);
188 	}
189 }
190 
191 static void boot_core(unsigned core)
192 {
193 	u32 access;
194 
195 	/* Select the appropriate core */
196 	write_gcr_cl_other(core << CM_GCR_Cx_OTHER_CORENUM_SHF);
197 
198 	/* Set its reset vector */
199 	write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
200 
201 	/* Ensure its coherency is disabled */
202 	write_gcr_co_coherence(0);
203 
204 	/* Ensure the core can access the GCRs */
205 	access = read_gcr_access();
206 	access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
207 	write_gcr_access(access);
208 
209 	if (mips_cpc_present()) {
210 		/* Reset the core */
211 		mips_cpc_lock_other(core);
212 		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
213 		mips_cpc_unlock_other();
214 	} else {
215 		/* Take the core out of reset */
216 		write_gcr_co_reset_release(0);
217 	}
218 
219 	/* The core is now powered up */
220 	bitmap_set(core_power, core, 1);
221 }
222 
223 static void remote_vpe_boot(void *dummy)
224 {
225 	mips_cps_boot_vpes();
226 }
227 
228 static void cps_boot_secondary(int cpu, struct task_struct *idle)
229 {
230 	unsigned core = cpu_data[cpu].core;
231 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
232 	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
233 	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
234 	unsigned int remote;
235 	int err;
236 
237 	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
238 	vpe_cfg->sp = __KSTK_TOS(idle);
239 	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
240 
241 	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
242 
243 	preempt_disable();
244 
245 	if (!test_bit(core, core_power)) {
246 		/* Boot a VPE on a powered down core */
247 		boot_core(core);
248 		goto out;
249 	}
250 
251 	if (core != current_cpu_data.core) {
252 		/* Boot a VPE on another powered up core */
253 		for (remote = 0; remote < NR_CPUS; remote++) {
254 			if (cpu_data[remote].core != core)
255 				continue;
256 			if (cpu_online(remote))
257 				break;
258 		}
259 		BUG_ON(remote >= NR_CPUS);
260 
261 		err = smp_call_function_single(remote, remote_vpe_boot,
262 					       NULL, 1);
263 		if (err)
264 			panic("Failed to call remote CPU\n");
265 		goto out;
266 	}
267 
268 	BUG_ON(!cpu_has_mipsmt);
269 
270 	/* Boot a VPE on this core */
271 	mips_cps_boot_vpes();
272 out:
273 	preempt_enable();
274 }
275 
276 static void cps_init_secondary(void)
277 {
278 	/* Disable MT - we only want to run 1 TC per VPE */
279 	if (cpu_has_mipsmt)
280 		dmt();
281 
282 	change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 | STATUSF_IP4 |
283 				 STATUSF_IP5 | STATUSF_IP6 | STATUSF_IP7);
284 }
285 
286 static void cps_smp_finish(void)
287 {
288 	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
289 
290 #ifdef CONFIG_MIPS_MT_FPAFF
291 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
292 	if (cpu_has_fpu)
293 		cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
294 #endif /* CONFIG_MIPS_MT_FPAFF */
295 
296 	local_irq_enable();
297 }
298 
299 #ifdef CONFIG_HOTPLUG_CPU
300 
301 static int cps_cpu_disable(void)
302 {
303 	unsigned cpu = smp_processor_id();
304 	struct core_boot_config *core_cfg;
305 
306 	if (!cpu)
307 		return -EBUSY;
308 
309 	if (!cps_pm_support_state(CPS_PM_POWER_GATED))
310 		return -EINVAL;
311 
312 	core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
313 	atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
314 	smp_mb__after_atomic();
315 	set_cpu_online(cpu, false);
316 	cpumask_clear_cpu(cpu, &cpu_callin_map);
317 
318 	return 0;
319 }
320 
321 static DECLARE_COMPLETION(cpu_death_chosen);
322 static unsigned cpu_death_sibling;
323 static enum {
324 	CPU_DEATH_HALT,
325 	CPU_DEATH_POWER,
326 } cpu_death;
327 
328 void play_dead(void)
329 {
330 	unsigned cpu, core;
331 
332 	local_irq_disable();
333 	idle_task_exit();
334 	cpu = smp_processor_id();
335 	cpu_death = CPU_DEATH_POWER;
336 
337 	if (cpu_has_mipsmt) {
338 		core = cpu_data[cpu].core;
339 
340 		/* Look for another online VPE within the core */
341 		for_each_online_cpu(cpu_death_sibling) {
342 			if (cpu_data[cpu_death_sibling].core != core)
343 				continue;
344 
345 			/*
346 			 * There is an online VPE within the core. Just halt
347 			 * this TC and leave the core alone.
348 			 */
349 			cpu_death = CPU_DEATH_HALT;
350 			break;
351 		}
352 	}
353 
354 	/* This CPU has chosen its way out */
355 	complete(&cpu_death_chosen);
356 
357 	if (cpu_death == CPU_DEATH_HALT) {
358 		/* Halt this TC */
359 		write_c0_tchalt(TCHALT_H);
360 		instruction_hazard();
361 	} else {
362 		/* Power down the core */
363 		cps_pm_enter_state(CPS_PM_POWER_GATED);
364 	}
365 
366 	/* This should never be reached */
367 	panic("Failed to offline CPU %u", cpu);
368 }
369 
370 static void wait_for_sibling_halt(void *ptr_cpu)
371 {
372 	unsigned cpu = (unsigned long)ptr_cpu;
373 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
374 	unsigned halted;
375 	unsigned long flags;
376 
377 	do {
378 		local_irq_save(flags);
379 		settc(vpe_id);
380 		halted = read_tc_c0_tchalt();
381 		local_irq_restore(flags);
382 	} while (!(halted & TCHALT_H));
383 }
384 
385 static void cps_cpu_die(unsigned int cpu)
386 {
387 	unsigned core = cpu_data[cpu].core;
388 	unsigned stat;
389 	int err;
390 
391 	/* Wait for the cpu to choose its way out */
392 	if (!wait_for_completion_timeout(&cpu_death_chosen,
393 					 msecs_to_jiffies(5000))) {
394 		pr_err("CPU%u: didn't offline\n", cpu);
395 		return;
396 	}
397 
398 	/*
399 	 * Now wait for the CPU to actually offline. Without doing this that
400 	 * offlining may race with one or more of:
401 	 *
402 	 *   - Onlining the CPU again.
403 	 *   - Powering down the core if another VPE within it is offlined.
404 	 *   - A sibling VPE entering a non-coherent state.
405 	 *
406 	 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
407 	 * with which we could race, so do nothing.
408 	 */
409 	if (cpu_death == CPU_DEATH_POWER) {
410 		/*
411 		 * Wait for the core to enter a powered down or clock gated
412 		 * state, the latter happening when a JTAG probe is connected
413 		 * in which case the CPC will refuse to power down the core.
414 		 */
415 		do {
416 			mips_cpc_lock_other(core);
417 			stat = read_cpc_co_stat_conf();
418 			stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
419 			mips_cpc_unlock_other();
420 		} while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
421 			 stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
422 			 stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);
423 
424 		/* Indicate the core is powered off */
425 		bitmap_clear(core_power, core, 1);
426 	} else if (cpu_has_mipsmt) {
427 		/*
428 		 * Have a CPU with access to the offlined CPUs registers wait
429 		 * for its TC to halt.
430 		 */
431 		err = smp_call_function_single(cpu_death_sibling,
432 					       wait_for_sibling_halt,
433 					       (void *)(unsigned long)cpu, 1);
434 		if (err)
435 			panic("Failed to call remote sibling CPU\n");
436 	}
437 }
438 
439 #endif /* CONFIG_HOTPLUG_CPU */
440 
441 static struct plat_smp_ops cps_smp_ops = {
442 	.smp_setup		= cps_smp_setup,
443 	.prepare_cpus		= cps_prepare_cpus,
444 	.boot_secondary		= cps_boot_secondary,
445 	.init_secondary		= cps_init_secondary,
446 	.smp_finish		= cps_smp_finish,
447 	.send_ipi_single	= gic_send_ipi_single,
448 	.send_ipi_mask		= gic_send_ipi_mask,
449 #ifdef CONFIG_HOTPLUG_CPU
450 	.cpu_disable		= cps_cpu_disable,
451 	.cpu_die		= cps_cpu_die,
452 #endif
453 };
454 
455 bool mips_cps_smp_in_use(void)
456 {
457 	extern struct plat_smp_ops *mp_ops;
458 	return mp_ops == &cps_smp_ops;
459 }
460 
461 int register_cps_smp_ops(void)
462 {
463 	if (!mips_cm_present()) {
464 		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
465 		return -ENODEV;
466 	}
467 
468 	/* check we have a GIC - we need one for IPIs */
469 	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
470 		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
471 		return -ENODEV;
472 	}
473 
474 	register_smp_ops(&cps_smp_ops);
475 	return 0;
476 }
477