1 /* 2 * Copyright (C) 2013 Imagination Technologies 3 * Author: Paul Burton <paul.burton@imgtec.com> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License as published by the 7 * Free Software Foundation; either version 2 of the License, or (at your 8 * option) any later version. 9 */ 10 11 #include <linux/io.h> 12 #include <linux/irqchip/mips-gic.h> 13 #include <linux/sched.h> 14 #include <linux/slab.h> 15 #include <linux/smp.h> 16 #include <linux/types.h> 17 18 #include <asm/bcache.h> 19 #include <asm/mips-cm.h> 20 #include <asm/mips-cpc.h> 21 #include <asm/mips_mt.h> 22 #include <asm/mipsregs.h> 23 #include <asm/pm-cps.h> 24 #include <asm/r4kcache.h> 25 #include <asm/smp-cps.h> 26 #include <asm/time.h> 27 #include <asm/uasm.h> 28 29 static DECLARE_BITMAP(core_power, NR_CPUS); 30 31 struct core_boot_config *mips_cps_core_bootcfg; 32 33 static unsigned core_vpe_count(unsigned core) 34 { 35 unsigned cfg; 36 37 if (!config_enabled(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt) 38 return 1; 39 40 write_gcr_cl_other(core << CM_GCR_Cx_OTHER_CORENUM_SHF); 41 cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK; 42 return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1; 43 } 44 45 static void __init cps_smp_setup(void) 46 { 47 unsigned int ncores, nvpes, core_vpes; 48 int c, v; 49 50 /* Detect & record VPE topology */ 51 ncores = mips_cm_numcores(); 52 pr_info("VPE topology "); 53 for (c = nvpes = 0; c < ncores; c++) { 54 core_vpes = core_vpe_count(c); 55 pr_cont("%c%u", c ? ',' : '{', core_vpes); 56 57 /* Use the number of VPEs in core 0 for smp_num_siblings */ 58 if (!c) 59 smp_num_siblings = core_vpes; 60 61 for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) { 62 cpu_data[nvpes + v].core = c; 63 #ifdef CONFIG_MIPS_MT_SMP 64 cpu_data[nvpes + v].vpe_id = v; 65 #endif 66 } 67 68 nvpes += core_vpes; 69 } 70 pr_cont("} total %u\n", nvpes); 71 72 /* Indicate present CPUs (CPU being synonymous with VPE) */ 73 for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) { 74 set_cpu_possible(v, true); 75 set_cpu_present(v, true); 76 __cpu_number_map[v] = v; 77 __cpu_logical_map[v] = v; 78 } 79 80 /* Set a coherent default CCA (CWB) */ 81 change_c0_config(CONF_CM_CMASK, 0x5); 82 83 /* Core 0 is powered up (we're running on it) */ 84 bitmap_set(core_power, 0, 1); 85 86 /* Initialise core 0 */ 87 mips_cps_core_init(); 88 89 /* Make core 0 coherent with everything */ 90 write_gcr_cl_coherence(0xff); 91 92 #ifdef CONFIG_MIPS_MT_FPAFF 93 /* If we have an FPU, enroll ourselves in the FPU-full mask */ 94 if (cpu_has_fpu) 95 cpumask_set_cpu(0, &mt_fpu_cpumask); 96 #endif /* CONFIG_MIPS_MT_FPAFF */ 97 } 98 99 static void __init cps_prepare_cpus(unsigned int max_cpus) 100 { 101 unsigned ncores, core_vpes, c, cca; 102 bool cca_unsuitable; 103 u32 *entry_code; 104 105 mips_mt_set_cpuoptions(); 106 107 /* Detect whether the CCA is unsuited to multi-core SMP */ 108 cca = read_c0_config() & CONF_CM_CMASK; 109 switch (cca) { 110 case 0x4: /* CWBE */ 111 case 0x5: /* CWB */ 112 /* The CCA is coherent, multi-core is fine */ 113 cca_unsuitable = false; 114 break; 115 116 default: 117 /* CCA is not coherent, multi-core is not usable */ 118 cca_unsuitable = true; 119 } 120 121 /* Warn the user if the CCA prevents multi-core */ 122 ncores = mips_cm_numcores(); 123 if (cca_unsuitable && ncores > 1) { 124 pr_warn("Using only one core due to unsuitable CCA 0x%x\n", 125 cca); 126 127 for_each_present_cpu(c) { 128 if (cpu_data[c].core) 129 set_cpu_present(c, false); 130 } 131 } 132 133 /* 134 * Patch the start of mips_cps_core_entry to provide: 135 * 136 * v1 = CM base address 137 * s0 = kseg0 CCA 138 */ 139 entry_code = (u32 *)&mips_cps_core_entry; 140 UASM_i_LA(&entry_code, 3, (long)mips_cm_base); 141 uasm_i_addiu(&entry_code, 16, 0, cca); 142 blast_dcache_range((unsigned long)&mips_cps_core_entry, 143 (unsigned long)entry_code); 144 bc_wback_inv((unsigned long)&mips_cps_core_entry, 145 (void *)entry_code - (void *)&mips_cps_core_entry); 146 __sync(); 147 148 /* Allocate core boot configuration structs */ 149 mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg), 150 GFP_KERNEL); 151 if (!mips_cps_core_bootcfg) { 152 pr_err("Failed to allocate boot config for %u cores\n", ncores); 153 goto err_out; 154 } 155 156 /* Allocate VPE boot configuration structs */ 157 for (c = 0; c < ncores; c++) { 158 core_vpes = core_vpe_count(c); 159 mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes, 160 sizeof(*mips_cps_core_bootcfg[c].vpe_config), 161 GFP_KERNEL); 162 if (!mips_cps_core_bootcfg[c].vpe_config) { 163 pr_err("Failed to allocate %u VPE boot configs\n", 164 core_vpes); 165 goto err_out; 166 } 167 } 168 169 /* Mark this CPU as booted */ 170 atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask, 171 1 << cpu_vpe_id(¤t_cpu_data)); 172 173 return; 174 err_out: 175 /* Clean up allocations */ 176 if (mips_cps_core_bootcfg) { 177 for (c = 0; c < ncores; c++) 178 kfree(mips_cps_core_bootcfg[c].vpe_config); 179 kfree(mips_cps_core_bootcfg); 180 mips_cps_core_bootcfg = NULL; 181 } 182 183 /* Effectively disable SMP by declaring CPUs not present */ 184 for_each_possible_cpu(c) { 185 if (c == 0) 186 continue; 187 set_cpu_present(c, false); 188 } 189 } 190 191 static void boot_core(unsigned core) 192 { 193 u32 access; 194 195 /* Select the appropriate core */ 196 write_gcr_cl_other(core << CM_GCR_Cx_OTHER_CORENUM_SHF); 197 198 /* Set its reset vector */ 199 write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry)); 200 201 /* Ensure its coherency is disabled */ 202 write_gcr_co_coherence(0); 203 204 /* Ensure the core can access the GCRs */ 205 access = read_gcr_access(); 206 access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core); 207 write_gcr_access(access); 208 209 if (mips_cpc_present()) { 210 /* Reset the core */ 211 mips_cpc_lock_other(core); 212 write_cpc_co_cmd(CPC_Cx_CMD_RESET); 213 mips_cpc_unlock_other(); 214 } else { 215 /* Take the core out of reset */ 216 write_gcr_co_reset_release(0); 217 } 218 219 /* The core is now powered up */ 220 bitmap_set(core_power, core, 1); 221 } 222 223 static void remote_vpe_boot(void *dummy) 224 { 225 mips_cps_boot_vpes(); 226 } 227 228 static void cps_boot_secondary(int cpu, struct task_struct *idle) 229 { 230 unsigned core = cpu_data[cpu].core; 231 unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]); 232 struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core]; 233 struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id]; 234 unsigned int remote; 235 int err; 236 237 vpe_cfg->pc = (unsigned long)&smp_bootstrap; 238 vpe_cfg->sp = __KSTK_TOS(idle); 239 vpe_cfg->gp = (unsigned long)task_thread_info(idle); 240 241 atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask); 242 243 preempt_disable(); 244 245 if (!test_bit(core, core_power)) { 246 /* Boot a VPE on a powered down core */ 247 boot_core(core); 248 goto out; 249 } 250 251 if (core != current_cpu_data.core) { 252 /* Boot a VPE on another powered up core */ 253 for (remote = 0; remote < NR_CPUS; remote++) { 254 if (cpu_data[remote].core != core) 255 continue; 256 if (cpu_online(remote)) 257 break; 258 } 259 BUG_ON(remote >= NR_CPUS); 260 261 err = smp_call_function_single(remote, remote_vpe_boot, 262 NULL, 1); 263 if (err) 264 panic("Failed to call remote CPU\n"); 265 goto out; 266 } 267 268 BUG_ON(!cpu_has_mipsmt); 269 270 /* Boot a VPE on this core */ 271 mips_cps_boot_vpes(); 272 out: 273 preempt_enable(); 274 } 275 276 static void cps_init_secondary(void) 277 { 278 /* Disable MT - we only want to run 1 TC per VPE */ 279 if (cpu_has_mipsmt) 280 dmt(); 281 282 change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 | STATUSF_IP4 | 283 STATUSF_IP5 | STATUSF_IP6 | STATUSF_IP7); 284 } 285 286 static void cps_smp_finish(void) 287 { 288 write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ)); 289 290 #ifdef CONFIG_MIPS_MT_FPAFF 291 /* If we have an FPU, enroll ourselves in the FPU-full mask */ 292 if (cpu_has_fpu) 293 cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask); 294 #endif /* CONFIG_MIPS_MT_FPAFF */ 295 296 local_irq_enable(); 297 } 298 299 #ifdef CONFIG_HOTPLUG_CPU 300 301 static int cps_cpu_disable(void) 302 { 303 unsigned cpu = smp_processor_id(); 304 struct core_boot_config *core_cfg; 305 306 if (!cpu) 307 return -EBUSY; 308 309 if (!cps_pm_support_state(CPS_PM_POWER_GATED)) 310 return -EINVAL; 311 312 core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core]; 313 atomic_sub(1 << cpu_vpe_id(¤t_cpu_data), &core_cfg->vpe_mask); 314 smp_mb__after_atomic(); 315 set_cpu_online(cpu, false); 316 cpumask_clear_cpu(cpu, &cpu_callin_map); 317 318 return 0; 319 } 320 321 static DECLARE_COMPLETION(cpu_death_chosen); 322 static unsigned cpu_death_sibling; 323 static enum { 324 CPU_DEATH_HALT, 325 CPU_DEATH_POWER, 326 } cpu_death; 327 328 void play_dead(void) 329 { 330 unsigned cpu, core; 331 332 local_irq_disable(); 333 idle_task_exit(); 334 cpu = smp_processor_id(); 335 cpu_death = CPU_DEATH_POWER; 336 337 if (cpu_has_mipsmt) { 338 core = cpu_data[cpu].core; 339 340 /* Look for another online VPE within the core */ 341 for_each_online_cpu(cpu_death_sibling) { 342 if (cpu_data[cpu_death_sibling].core != core) 343 continue; 344 345 /* 346 * There is an online VPE within the core. Just halt 347 * this TC and leave the core alone. 348 */ 349 cpu_death = CPU_DEATH_HALT; 350 break; 351 } 352 } 353 354 /* This CPU has chosen its way out */ 355 complete(&cpu_death_chosen); 356 357 if (cpu_death == CPU_DEATH_HALT) { 358 /* Halt this TC */ 359 write_c0_tchalt(TCHALT_H); 360 instruction_hazard(); 361 } else { 362 /* Power down the core */ 363 cps_pm_enter_state(CPS_PM_POWER_GATED); 364 } 365 366 /* This should never be reached */ 367 panic("Failed to offline CPU %u", cpu); 368 } 369 370 static void wait_for_sibling_halt(void *ptr_cpu) 371 { 372 unsigned cpu = (unsigned long)ptr_cpu; 373 unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]); 374 unsigned halted; 375 unsigned long flags; 376 377 do { 378 local_irq_save(flags); 379 settc(vpe_id); 380 halted = read_tc_c0_tchalt(); 381 local_irq_restore(flags); 382 } while (!(halted & TCHALT_H)); 383 } 384 385 static void cps_cpu_die(unsigned int cpu) 386 { 387 unsigned core = cpu_data[cpu].core; 388 unsigned stat; 389 int err; 390 391 /* Wait for the cpu to choose its way out */ 392 if (!wait_for_completion_timeout(&cpu_death_chosen, 393 msecs_to_jiffies(5000))) { 394 pr_err("CPU%u: didn't offline\n", cpu); 395 return; 396 } 397 398 /* 399 * Now wait for the CPU to actually offline. Without doing this that 400 * offlining may race with one or more of: 401 * 402 * - Onlining the CPU again. 403 * - Powering down the core if another VPE within it is offlined. 404 * - A sibling VPE entering a non-coherent state. 405 * 406 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing 407 * with which we could race, so do nothing. 408 */ 409 if (cpu_death == CPU_DEATH_POWER) { 410 /* 411 * Wait for the core to enter a powered down or clock gated 412 * state, the latter happening when a JTAG probe is connected 413 * in which case the CPC will refuse to power down the core. 414 */ 415 do { 416 mips_cpc_lock_other(core); 417 stat = read_cpc_co_stat_conf(); 418 stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK; 419 mips_cpc_unlock_other(); 420 } while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 && 421 stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 && 422 stat != CPC_Cx_STAT_CONF_SEQSTATE_U2); 423 424 /* Indicate the core is powered off */ 425 bitmap_clear(core_power, core, 1); 426 } else if (cpu_has_mipsmt) { 427 /* 428 * Have a CPU with access to the offlined CPUs registers wait 429 * for its TC to halt. 430 */ 431 err = smp_call_function_single(cpu_death_sibling, 432 wait_for_sibling_halt, 433 (void *)(unsigned long)cpu, 1); 434 if (err) 435 panic("Failed to call remote sibling CPU\n"); 436 } 437 } 438 439 #endif /* CONFIG_HOTPLUG_CPU */ 440 441 static struct plat_smp_ops cps_smp_ops = { 442 .smp_setup = cps_smp_setup, 443 .prepare_cpus = cps_prepare_cpus, 444 .boot_secondary = cps_boot_secondary, 445 .init_secondary = cps_init_secondary, 446 .smp_finish = cps_smp_finish, 447 .send_ipi_single = gic_send_ipi_single, 448 .send_ipi_mask = gic_send_ipi_mask, 449 #ifdef CONFIG_HOTPLUG_CPU 450 .cpu_disable = cps_cpu_disable, 451 .cpu_die = cps_cpu_die, 452 #endif 453 }; 454 455 bool mips_cps_smp_in_use(void) 456 { 457 extern struct plat_smp_ops *mp_ops; 458 return mp_ops == &cps_smp_ops; 459 } 460 461 int register_cps_smp_ops(void) 462 { 463 if (!mips_cm_present()) { 464 pr_warn("MIPS CPS SMP unable to proceed without a CM\n"); 465 return -ENODEV; 466 } 467 468 /* check we have a GIC - we need one for IPIs */ 469 if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) { 470 pr_warn("MIPS CPS SMP unable to proceed without a GIC\n"); 471 return -ENODEV; 472 } 473 474 register_smp_ops(&cps_smp_ops); 475 return 0; 476 } 477