xref: /openbmc/linux/arch/mips/kernel/smp-cps.c (revision cfbb9be8)
1 /*
2  * Copyright (C) 2013 Imagination Technologies
3  * Author: Paul Burton <paul.burton@mips.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10 
11 #include <linux/cpu.h>
12 #include <linux/delay.h>
13 #include <linux/io.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/slab.h>
17 #include <linux/smp.h>
18 #include <linux/types.h>
19 
20 #include <asm/bcache.h>
21 #include <asm/mips-cps.h>
22 #include <asm/mips_mt.h>
23 #include <asm/mipsregs.h>
24 #include <asm/pm-cps.h>
25 #include <asm/r4kcache.h>
26 #include <asm/smp-cps.h>
27 #include <asm/time.h>
28 #include <asm/uasm.h>
29 
30 static bool threads_disabled;
31 static DECLARE_BITMAP(core_power, NR_CPUS);
32 
33 struct core_boot_config *mips_cps_core_bootcfg;
34 
35 static int __init setup_nothreads(char *s)
36 {
37 	threads_disabled = true;
38 	return 0;
39 }
40 early_param("nothreads", setup_nothreads);
41 
42 static unsigned core_vpe_count(unsigned int cluster, unsigned core)
43 {
44 	if (threads_disabled)
45 		return 1;
46 
47 	return mips_cps_numvps(cluster, core);
48 }
49 
50 static void __init cps_smp_setup(void)
51 {
52 	unsigned int nclusters, ncores, nvpes, core_vpes;
53 	unsigned long core_entry;
54 	int cl, c, v;
55 
56 	/* Detect & record VPE topology */
57 	nvpes = 0;
58 	nclusters = mips_cps_numclusters();
59 	pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
60 	for (cl = 0; cl < nclusters; cl++) {
61 		if (cl > 0)
62 			pr_cont(",");
63 		pr_cont("{");
64 
65 		ncores = mips_cps_numcores(cl);
66 		for (c = 0; c < ncores; c++) {
67 			core_vpes = core_vpe_count(cl, c);
68 
69 			if (c > 0)
70 				pr_cont(",");
71 			pr_cont("%u", core_vpes);
72 
73 			/* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
74 			if (!cl && !c)
75 				smp_num_siblings = core_vpes;
76 
77 			for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
78 				cpu_set_cluster(&cpu_data[nvpes + v], cl);
79 				cpu_set_core(&cpu_data[nvpes + v], c);
80 				cpu_set_vpe_id(&cpu_data[nvpes + v], v);
81 			}
82 
83 			nvpes += core_vpes;
84 		}
85 
86 		pr_cont("}");
87 	}
88 	pr_cont(" total %u\n", nvpes);
89 
90 	/* Indicate present CPUs (CPU being synonymous with VPE) */
91 	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
92 		set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0);
93 		set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0);
94 		__cpu_number_map[v] = v;
95 		__cpu_logical_map[v] = v;
96 	}
97 
98 	/* Set a coherent default CCA (CWB) */
99 	change_c0_config(CONF_CM_CMASK, 0x5);
100 
101 	/* Core 0 is powered up (we're running on it) */
102 	bitmap_set(core_power, 0, 1);
103 
104 	/* Initialise core 0 */
105 	mips_cps_core_init();
106 
107 	/* Make core 0 coherent with everything */
108 	write_gcr_cl_coherence(0xff);
109 
110 	if (mips_cm_revision() >= CM_REV_CM3) {
111 		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
112 		write_gcr_bev_base(core_entry);
113 	}
114 
115 #ifdef CONFIG_MIPS_MT_FPAFF
116 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
117 	if (cpu_has_fpu)
118 		cpumask_set_cpu(0, &mt_fpu_cpumask);
119 #endif /* CONFIG_MIPS_MT_FPAFF */
120 }
121 
122 static void __init cps_prepare_cpus(unsigned int max_cpus)
123 {
124 	unsigned ncores, core_vpes, c, cca;
125 	bool cca_unsuitable, cores_limited;
126 	u32 *entry_code;
127 
128 	mips_mt_set_cpuoptions();
129 
130 	/* Detect whether the CCA is unsuited to multi-core SMP */
131 	cca = read_c0_config() & CONF_CM_CMASK;
132 	switch (cca) {
133 	case 0x4: /* CWBE */
134 	case 0x5: /* CWB */
135 		/* The CCA is coherent, multi-core is fine */
136 		cca_unsuitable = false;
137 		break;
138 
139 	default:
140 		/* CCA is not coherent, multi-core is not usable */
141 		cca_unsuitable = true;
142 	}
143 
144 	/* Warn the user if the CCA prevents multi-core */
145 	cores_limited = false;
146 	if (cca_unsuitable || cpu_has_dc_aliases) {
147 		for_each_present_cpu(c) {
148 			if (cpus_are_siblings(smp_processor_id(), c))
149 				continue;
150 
151 			set_cpu_present(c, false);
152 			cores_limited = true;
153 		}
154 	}
155 	if (cores_limited)
156 		pr_warn("Using only one core due to %s%s%s\n",
157 			cca_unsuitable ? "unsuitable CCA" : "",
158 			(cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
159 			cpu_has_dc_aliases ? "dcache aliasing" : "");
160 
161 	/*
162 	 * Patch the start of mips_cps_core_entry to provide:
163 	 *
164 	 * s0 = kseg0 CCA
165 	 */
166 	entry_code = (u32 *)&mips_cps_core_entry;
167 	uasm_i_addiu(&entry_code, 16, 0, cca);
168 	blast_dcache_range((unsigned long)&mips_cps_core_entry,
169 			   (unsigned long)entry_code);
170 	bc_wback_inv((unsigned long)&mips_cps_core_entry,
171 		     (void *)entry_code - (void *)&mips_cps_core_entry);
172 	__sync();
173 
174 	/* Allocate core boot configuration structs */
175 	ncores = mips_cps_numcores(0);
176 	mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
177 					GFP_KERNEL);
178 	if (!mips_cps_core_bootcfg) {
179 		pr_err("Failed to allocate boot config for %u cores\n", ncores);
180 		goto err_out;
181 	}
182 
183 	/* Allocate VPE boot configuration structs */
184 	for (c = 0; c < ncores; c++) {
185 		core_vpes = core_vpe_count(0, c);
186 		mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
187 				sizeof(*mips_cps_core_bootcfg[c].vpe_config),
188 				GFP_KERNEL);
189 		if (!mips_cps_core_bootcfg[c].vpe_config) {
190 			pr_err("Failed to allocate %u VPE boot configs\n",
191 			       core_vpes);
192 			goto err_out;
193 		}
194 	}
195 
196 	/* Mark this CPU as booted */
197 	atomic_set(&mips_cps_core_bootcfg[cpu_core(&current_cpu_data)].vpe_mask,
198 		   1 << cpu_vpe_id(&current_cpu_data));
199 
200 	return;
201 err_out:
202 	/* Clean up allocations */
203 	if (mips_cps_core_bootcfg) {
204 		for (c = 0; c < ncores; c++)
205 			kfree(mips_cps_core_bootcfg[c].vpe_config);
206 		kfree(mips_cps_core_bootcfg);
207 		mips_cps_core_bootcfg = NULL;
208 	}
209 
210 	/* Effectively disable SMP by declaring CPUs not present */
211 	for_each_possible_cpu(c) {
212 		if (c == 0)
213 			continue;
214 		set_cpu_present(c, false);
215 	}
216 }
217 
218 static void boot_core(unsigned int core, unsigned int vpe_id)
219 {
220 	u32 stat, seq_state;
221 	unsigned timeout;
222 
223 	/* Select the appropriate core */
224 	mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
225 
226 	/* Set its reset vector */
227 	write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
228 
229 	/* Ensure its coherency is disabled */
230 	write_gcr_co_coherence(0);
231 
232 	/* Start it with the legacy memory map and exception base */
233 	write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
234 
235 	/* Ensure the core can access the GCRs */
236 	set_gcr_access(1 << core);
237 
238 	if (mips_cpc_present()) {
239 		/* Reset the core */
240 		mips_cpc_lock_other(core);
241 
242 		if (mips_cm_revision() >= CM_REV_CM3) {
243 			/* Run only the requested VP following the reset */
244 			write_cpc_co_vp_stop(0xf);
245 			write_cpc_co_vp_run(1 << vpe_id);
246 
247 			/*
248 			 * Ensure that the VP_RUN register is written before the
249 			 * core leaves reset.
250 			 */
251 			wmb();
252 		}
253 
254 		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
255 
256 		timeout = 100;
257 		while (true) {
258 			stat = read_cpc_co_stat_conf();
259 			seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
260 			seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
261 
262 			/* U6 == coherent execution, ie. the core is up */
263 			if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
264 				break;
265 
266 			/* Delay a little while before we start warning */
267 			if (timeout) {
268 				timeout--;
269 				mdelay(10);
270 				continue;
271 			}
272 
273 			pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
274 				core, stat);
275 			mdelay(1000);
276 		}
277 
278 		mips_cpc_unlock_other();
279 	} else {
280 		/* Take the core out of reset */
281 		write_gcr_co_reset_release(0);
282 	}
283 
284 	mips_cm_unlock_other();
285 
286 	/* The core is now powered up */
287 	bitmap_set(core_power, core, 1);
288 }
289 
290 static void remote_vpe_boot(void *dummy)
291 {
292 	unsigned core = cpu_core(&current_cpu_data);
293 	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
294 
295 	mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
296 }
297 
298 static int cps_boot_secondary(int cpu, struct task_struct *idle)
299 {
300 	unsigned core = cpu_core(&cpu_data[cpu]);
301 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
302 	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
303 	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
304 	unsigned long core_entry;
305 	unsigned int remote;
306 	int err;
307 
308 	/* We don't yet support booting CPUs in other clusters */
309 	if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data))
310 		return -ENOSYS;
311 
312 	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
313 	vpe_cfg->sp = __KSTK_TOS(idle);
314 	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
315 
316 	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
317 
318 	preempt_disable();
319 
320 	if (!test_bit(core, core_power)) {
321 		/* Boot a VPE on a powered down core */
322 		boot_core(core, vpe_id);
323 		goto out;
324 	}
325 
326 	if (cpu_has_vp) {
327 		mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
328 		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
329 		write_gcr_co_reset_base(core_entry);
330 		mips_cm_unlock_other();
331 	}
332 
333 	if (!cpus_are_siblings(cpu, smp_processor_id())) {
334 		/* Boot a VPE on another powered up core */
335 		for (remote = 0; remote < NR_CPUS; remote++) {
336 			if (!cpus_are_siblings(cpu, remote))
337 				continue;
338 			if (cpu_online(remote))
339 				break;
340 		}
341 		if (remote >= NR_CPUS) {
342 			pr_crit("No online CPU in core %u to start CPU%d\n",
343 				core, cpu);
344 			goto out;
345 		}
346 
347 		err = smp_call_function_single(remote, remote_vpe_boot,
348 					       NULL, 1);
349 		if (err)
350 			panic("Failed to call remote CPU\n");
351 		goto out;
352 	}
353 
354 	BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
355 
356 	/* Boot a VPE on this core */
357 	mips_cps_boot_vpes(core_cfg, vpe_id);
358 out:
359 	preempt_enable();
360 	return 0;
361 }
362 
363 static void cps_init_secondary(void)
364 {
365 	/* Disable MT - we only want to run 1 TC per VPE */
366 	if (cpu_has_mipsmt)
367 		dmt();
368 
369 	if (mips_cm_revision() >= CM_REV_CM3) {
370 		unsigned int ident = read_gic_vl_ident();
371 
372 		/*
373 		 * Ensure that our calculation of the VP ID matches up with
374 		 * what the GIC reports, otherwise we'll have configured
375 		 * interrupts incorrectly.
376 		 */
377 		BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
378 	}
379 
380 	if (cpu_has_veic)
381 		clear_c0_status(ST0_IM);
382 	else
383 		change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
384 					 STATUSF_IP4 | STATUSF_IP5 |
385 					 STATUSF_IP6 | STATUSF_IP7);
386 }
387 
388 static void cps_smp_finish(void)
389 {
390 	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
391 
392 #ifdef CONFIG_MIPS_MT_FPAFF
393 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
394 	if (cpu_has_fpu)
395 		cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
396 #endif /* CONFIG_MIPS_MT_FPAFF */
397 
398 	local_irq_enable();
399 }
400 
401 #ifdef CONFIG_HOTPLUG_CPU
402 
403 static int cps_cpu_disable(void)
404 {
405 	unsigned cpu = smp_processor_id();
406 	struct core_boot_config *core_cfg;
407 
408 	if (!cpu)
409 		return -EBUSY;
410 
411 	if (!cps_pm_support_state(CPS_PM_POWER_GATED))
412 		return -EINVAL;
413 
414 	core_cfg = &mips_cps_core_bootcfg[cpu_core(&current_cpu_data)];
415 	atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
416 	smp_mb__after_atomic();
417 	set_cpu_online(cpu, false);
418 	calculate_cpu_foreign_map();
419 
420 	return 0;
421 }
422 
423 static unsigned cpu_death_sibling;
424 static enum {
425 	CPU_DEATH_HALT,
426 	CPU_DEATH_POWER,
427 } cpu_death;
428 
429 void play_dead(void)
430 {
431 	unsigned int cpu, core, vpe_id;
432 
433 	local_irq_disable();
434 	idle_task_exit();
435 	cpu = smp_processor_id();
436 	core = cpu_core(&cpu_data[cpu]);
437 	cpu_death = CPU_DEATH_POWER;
438 
439 	pr_debug("CPU%d going offline\n", cpu);
440 
441 	if (cpu_has_mipsmt || cpu_has_vp) {
442 		/* Look for another online VPE within the core */
443 		for_each_online_cpu(cpu_death_sibling) {
444 			if (!cpus_are_siblings(cpu, cpu_death_sibling))
445 				continue;
446 
447 			/*
448 			 * There is an online VPE within the core. Just halt
449 			 * this TC and leave the core alone.
450 			 */
451 			cpu_death = CPU_DEATH_HALT;
452 			break;
453 		}
454 	}
455 
456 	/* This CPU has chosen its way out */
457 	(void)cpu_report_death();
458 
459 	if (cpu_death == CPU_DEATH_HALT) {
460 		vpe_id = cpu_vpe_id(&cpu_data[cpu]);
461 
462 		pr_debug("Halting core %d VP%d\n", core, vpe_id);
463 		if (cpu_has_mipsmt) {
464 			/* Halt this TC */
465 			write_c0_tchalt(TCHALT_H);
466 			instruction_hazard();
467 		} else if (cpu_has_vp) {
468 			write_cpc_cl_vp_stop(1 << vpe_id);
469 
470 			/* Ensure that the VP_STOP register is written */
471 			wmb();
472 		}
473 	} else {
474 		pr_debug("Gating power to core %d\n", core);
475 		/* Power down the core */
476 		cps_pm_enter_state(CPS_PM_POWER_GATED);
477 	}
478 
479 	/* This should never be reached */
480 	panic("Failed to offline CPU %u", cpu);
481 }
482 
483 static void wait_for_sibling_halt(void *ptr_cpu)
484 {
485 	unsigned cpu = (unsigned long)ptr_cpu;
486 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
487 	unsigned halted;
488 	unsigned long flags;
489 
490 	do {
491 		local_irq_save(flags);
492 		settc(vpe_id);
493 		halted = read_tc_c0_tchalt();
494 		local_irq_restore(flags);
495 	} while (!(halted & TCHALT_H));
496 }
497 
498 static void cps_cpu_die(unsigned int cpu)
499 {
500 	unsigned core = cpu_core(&cpu_data[cpu]);
501 	unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
502 	ktime_t fail_time;
503 	unsigned stat;
504 	int err;
505 
506 	/* Wait for the cpu to choose its way out */
507 	if (!cpu_wait_death(cpu, 5)) {
508 		pr_err("CPU%u: didn't offline\n", cpu);
509 		return;
510 	}
511 
512 	/*
513 	 * Now wait for the CPU to actually offline. Without doing this that
514 	 * offlining may race with one or more of:
515 	 *
516 	 *   - Onlining the CPU again.
517 	 *   - Powering down the core if another VPE within it is offlined.
518 	 *   - A sibling VPE entering a non-coherent state.
519 	 *
520 	 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
521 	 * with which we could race, so do nothing.
522 	 */
523 	if (cpu_death == CPU_DEATH_POWER) {
524 		/*
525 		 * Wait for the core to enter a powered down or clock gated
526 		 * state, the latter happening when a JTAG probe is connected
527 		 * in which case the CPC will refuse to power down the core.
528 		 */
529 		fail_time = ktime_add_ms(ktime_get(), 2000);
530 		do {
531 			mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
532 			mips_cpc_lock_other(core);
533 			stat = read_cpc_co_stat_conf();
534 			stat &= CPC_Cx_STAT_CONF_SEQSTATE;
535 			stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
536 			mips_cpc_unlock_other();
537 			mips_cm_unlock_other();
538 
539 			if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
540 			    stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
541 			    stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
542 				break;
543 
544 			/*
545 			 * The core ought to have powered down, but didn't &
546 			 * now we don't really know what state it's in. It's
547 			 * likely that its _pwr_up pin has been wired to logic
548 			 * 1 & it powered back up as soon as we powered it
549 			 * down...
550 			 *
551 			 * The best we can do is warn the user & continue in
552 			 * the hope that the core is doing nothing harmful &
553 			 * might behave properly if we online it later.
554 			 */
555 			if (WARN(ktime_after(ktime_get(), fail_time),
556 				 "CPU%u hasn't powered down, seq. state %u\n",
557 				 cpu, stat))
558 				break;
559 		} while (1);
560 
561 		/* Indicate the core is powered off */
562 		bitmap_clear(core_power, core, 1);
563 	} else if (cpu_has_mipsmt) {
564 		/*
565 		 * Have a CPU with access to the offlined CPUs registers wait
566 		 * for its TC to halt.
567 		 */
568 		err = smp_call_function_single(cpu_death_sibling,
569 					       wait_for_sibling_halt,
570 					       (void *)(unsigned long)cpu, 1);
571 		if (err)
572 			panic("Failed to call remote sibling CPU\n");
573 	} else if (cpu_has_vp) {
574 		do {
575 			mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
576 			stat = read_cpc_co_vp_running();
577 			mips_cm_unlock_other();
578 		} while (stat & (1 << vpe_id));
579 	}
580 }
581 
582 #endif /* CONFIG_HOTPLUG_CPU */
583 
584 static const struct plat_smp_ops cps_smp_ops = {
585 	.smp_setup		= cps_smp_setup,
586 	.prepare_cpus		= cps_prepare_cpus,
587 	.boot_secondary		= cps_boot_secondary,
588 	.init_secondary		= cps_init_secondary,
589 	.smp_finish		= cps_smp_finish,
590 	.send_ipi_single	= mips_smp_send_ipi_single,
591 	.send_ipi_mask		= mips_smp_send_ipi_mask,
592 #ifdef CONFIG_HOTPLUG_CPU
593 	.cpu_disable		= cps_cpu_disable,
594 	.cpu_die		= cps_cpu_die,
595 #endif
596 };
597 
598 bool mips_cps_smp_in_use(void)
599 {
600 	extern const struct plat_smp_ops *mp_ops;
601 	return mp_ops == &cps_smp_ops;
602 }
603 
604 int register_cps_smp_ops(void)
605 {
606 	if (!mips_cm_present()) {
607 		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
608 		return -ENODEV;
609 	}
610 
611 	/* check we have a GIC - we need one for IPIs */
612 	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
613 		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
614 		return -ENODEV;
615 	}
616 
617 	register_smp_ops(&cps_smp_ops);
618 	return 0;
619 }
620