xref: /openbmc/linux/arch/mips/kernel/smp-cps.c (revision c819e2cf)
1 /*
2  * Copyright (C) 2013 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10 
11 #include <linux/io.h>
12 #include <linux/irqchip/mips-gic.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/smp.h>
16 #include <linux/types.h>
17 
18 #include <asm/bcache.h>
19 #include <asm/mips-cm.h>
20 #include <asm/mips-cpc.h>
21 #include <asm/mips_mt.h>
22 #include <asm/mipsregs.h>
23 #include <asm/pm-cps.h>
24 #include <asm/r4kcache.h>
25 #include <asm/smp-cps.h>
26 #include <asm/time.h>
27 #include <asm/uasm.h>
28 
29 static DECLARE_BITMAP(core_power, NR_CPUS);
30 
31 struct core_boot_config *mips_cps_core_bootcfg;
32 
33 static unsigned core_vpe_count(unsigned core)
34 {
35 	unsigned cfg;
36 
37 	if (!config_enabled(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
38 		return 1;
39 
40 	write_gcr_cl_other(core << CM_GCR_Cx_OTHER_CORENUM_SHF);
41 	cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
42 	return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
43 }
44 
45 static void __init cps_smp_setup(void)
46 {
47 	unsigned int ncores, nvpes, core_vpes;
48 	int c, v;
49 
50 	/* Detect & record VPE topology */
51 	ncores = mips_cm_numcores();
52 	pr_info("VPE topology ");
53 	for (c = nvpes = 0; c < ncores; c++) {
54 		core_vpes = core_vpe_count(c);
55 		pr_cont("%c%u", c ? ',' : '{', core_vpes);
56 
57 		/* Use the number of VPEs in core 0 for smp_num_siblings */
58 		if (!c)
59 			smp_num_siblings = core_vpes;
60 
61 		for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
62 			cpu_data[nvpes + v].core = c;
63 #ifdef CONFIG_MIPS_MT_SMP
64 			cpu_data[nvpes + v].vpe_id = v;
65 #endif
66 		}
67 
68 		nvpes += core_vpes;
69 	}
70 	pr_cont("} total %u\n", nvpes);
71 
72 	/* Indicate present CPUs (CPU being synonymous with VPE) */
73 	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
74 		set_cpu_possible(v, true);
75 		set_cpu_present(v, true);
76 		__cpu_number_map[v] = v;
77 		__cpu_logical_map[v] = v;
78 	}
79 
80 	/* Set a coherent default CCA (CWB) */
81 	change_c0_config(CONF_CM_CMASK, 0x5);
82 
83 	/* Core 0 is powered up (we're running on it) */
84 	bitmap_set(core_power, 0, 1);
85 
86 	/* Initialise core 0 */
87 	mips_cps_core_init();
88 
89 	/* Make core 0 coherent with everything */
90 	write_gcr_cl_coherence(0xff);
91 }
92 
93 static void __init cps_prepare_cpus(unsigned int max_cpus)
94 {
95 	unsigned ncores, core_vpes, c, cca;
96 	bool cca_unsuitable;
97 	u32 *entry_code;
98 
99 	mips_mt_set_cpuoptions();
100 
101 	/* Detect whether the CCA is unsuited to multi-core SMP */
102 	cca = read_c0_config() & CONF_CM_CMASK;
103 	switch (cca) {
104 	case 0x4: /* CWBE */
105 	case 0x5: /* CWB */
106 		/* The CCA is coherent, multi-core is fine */
107 		cca_unsuitable = false;
108 		break;
109 
110 	default:
111 		/* CCA is not coherent, multi-core is not usable */
112 		cca_unsuitable = true;
113 	}
114 
115 	/* Warn the user if the CCA prevents multi-core */
116 	ncores = mips_cm_numcores();
117 	if (cca_unsuitable && ncores > 1) {
118 		pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
119 			cca);
120 
121 		for_each_present_cpu(c) {
122 			if (cpu_data[c].core)
123 				set_cpu_present(c, false);
124 		}
125 	}
126 
127 	/*
128 	 * Patch the start of mips_cps_core_entry to provide:
129 	 *
130 	 * v0 = CM base address
131 	 * s0 = kseg0 CCA
132 	 */
133 	entry_code = (u32 *)&mips_cps_core_entry;
134 	UASM_i_LA(&entry_code, 3, (long)mips_cm_base);
135 	uasm_i_addiu(&entry_code, 16, 0, cca);
136 	blast_dcache_range((unsigned long)&mips_cps_core_entry,
137 			   (unsigned long)entry_code);
138 	bc_wback_inv((unsigned long)&mips_cps_core_entry,
139 		     (void *)entry_code - (void *)&mips_cps_core_entry);
140 	__sync();
141 
142 	/* Allocate core boot configuration structs */
143 	mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
144 					GFP_KERNEL);
145 	if (!mips_cps_core_bootcfg) {
146 		pr_err("Failed to allocate boot config for %u cores\n", ncores);
147 		goto err_out;
148 	}
149 
150 	/* Allocate VPE boot configuration structs */
151 	for (c = 0; c < ncores; c++) {
152 		core_vpes = core_vpe_count(c);
153 		mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
154 				sizeof(*mips_cps_core_bootcfg[c].vpe_config),
155 				GFP_KERNEL);
156 		if (!mips_cps_core_bootcfg[c].vpe_config) {
157 			pr_err("Failed to allocate %u VPE boot configs\n",
158 			       core_vpes);
159 			goto err_out;
160 		}
161 	}
162 
163 	/* Mark this CPU as booted */
164 	atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
165 		   1 << cpu_vpe_id(&current_cpu_data));
166 
167 	return;
168 err_out:
169 	/* Clean up allocations */
170 	if (mips_cps_core_bootcfg) {
171 		for (c = 0; c < ncores; c++)
172 			kfree(mips_cps_core_bootcfg[c].vpe_config);
173 		kfree(mips_cps_core_bootcfg);
174 		mips_cps_core_bootcfg = NULL;
175 	}
176 
177 	/* Effectively disable SMP by declaring CPUs not present */
178 	for_each_possible_cpu(c) {
179 		if (c == 0)
180 			continue;
181 		set_cpu_present(c, false);
182 	}
183 }
184 
185 static void boot_core(unsigned core)
186 {
187 	u32 access;
188 
189 	/* Select the appropriate core */
190 	write_gcr_cl_other(core << CM_GCR_Cx_OTHER_CORENUM_SHF);
191 
192 	/* Set its reset vector */
193 	write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
194 
195 	/* Ensure its coherency is disabled */
196 	write_gcr_co_coherence(0);
197 
198 	/* Ensure the core can access the GCRs */
199 	access = read_gcr_access();
200 	access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
201 	write_gcr_access(access);
202 
203 	if (mips_cpc_present()) {
204 		/* Reset the core */
205 		mips_cpc_lock_other(core);
206 		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
207 		mips_cpc_unlock_other();
208 	} else {
209 		/* Take the core out of reset */
210 		write_gcr_co_reset_release(0);
211 	}
212 
213 	/* The core is now powered up */
214 	bitmap_set(core_power, core, 1);
215 }
216 
217 static void remote_vpe_boot(void *dummy)
218 {
219 	mips_cps_boot_vpes();
220 }
221 
222 static void cps_boot_secondary(int cpu, struct task_struct *idle)
223 {
224 	unsigned core = cpu_data[cpu].core;
225 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
226 	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
227 	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
228 	unsigned int remote;
229 	int err;
230 
231 	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
232 	vpe_cfg->sp = __KSTK_TOS(idle);
233 	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
234 
235 	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
236 
237 	preempt_disable();
238 
239 	if (!test_bit(core, core_power)) {
240 		/* Boot a VPE on a powered down core */
241 		boot_core(core);
242 		goto out;
243 	}
244 
245 	if (core != current_cpu_data.core) {
246 		/* Boot a VPE on another powered up core */
247 		for (remote = 0; remote < NR_CPUS; remote++) {
248 			if (cpu_data[remote].core != core)
249 				continue;
250 			if (cpu_online(remote))
251 				break;
252 		}
253 		BUG_ON(remote >= NR_CPUS);
254 
255 		err = smp_call_function_single(remote, remote_vpe_boot,
256 					       NULL, 1);
257 		if (err)
258 			panic("Failed to call remote CPU\n");
259 		goto out;
260 	}
261 
262 	BUG_ON(!cpu_has_mipsmt);
263 
264 	/* Boot a VPE on this core */
265 	mips_cps_boot_vpes();
266 out:
267 	preempt_enable();
268 }
269 
270 static void cps_init_secondary(void)
271 {
272 	/* Disable MT - we only want to run 1 TC per VPE */
273 	if (cpu_has_mipsmt)
274 		dmt();
275 
276 	change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 | STATUSF_IP4 |
277 				 STATUSF_IP5 | STATUSF_IP6 | STATUSF_IP7);
278 }
279 
280 static void cps_smp_finish(void)
281 {
282 	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
283 
284 #ifdef CONFIG_MIPS_MT_FPAFF
285 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
286 	if (cpu_has_fpu)
287 		cpu_set(smp_processor_id(), mt_fpu_cpumask);
288 #endif /* CONFIG_MIPS_MT_FPAFF */
289 
290 	local_irq_enable();
291 }
292 
293 #ifdef CONFIG_HOTPLUG_CPU
294 
295 static int cps_cpu_disable(void)
296 {
297 	unsigned cpu = smp_processor_id();
298 	struct core_boot_config *core_cfg;
299 
300 	if (!cpu)
301 		return -EBUSY;
302 
303 	if (!cps_pm_support_state(CPS_PM_POWER_GATED))
304 		return -EINVAL;
305 
306 	core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
307 	atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
308 	smp_mb__after_atomic();
309 	set_cpu_online(cpu, false);
310 	cpu_clear(cpu, cpu_callin_map);
311 
312 	return 0;
313 }
314 
315 static DECLARE_COMPLETION(cpu_death_chosen);
316 static unsigned cpu_death_sibling;
317 static enum {
318 	CPU_DEATH_HALT,
319 	CPU_DEATH_POWER,
320 } cpu_death;
321 
322 void play_dead(void)
323 {
324 	unsigned cpu, core;
325 
326 	local_irq_disable();
327 	idle_task_exit();
328 	cpu = smp_processor_id();
329 	cpu_death = CPU_DEATH_POWER;
330 
331 	if (cpu_has_mipsmt) {
332 		core = cpu_data[cpu].core;
333 
334 		/* Look for another online VPE within the core */
335 		for_each_online_cpu(cpu_death_sibling) {
336 			if (cpu_data[cpu_death_sibling].core != core)
337 				continue;
338 
339 			/*
340 			 * There is an online VPE within the core. Just halt
341 			 * this TC and leave the core alone.
342 			 */
343 			cpu_death = CPU_DEATH_HALT;
344 			break;
345 		}
346 	}
347 
348 	/* This CPU has chosen its way out */
349 	complete(&cpu_death_chosen);
350 
351 	if (cpu_death == CPU_DEATH_HALT) {
352 		/* Halt this TC */
353 		write_c0_tchalt(TCHALT_H);
354 		instruction_hazard();
355 	} else {
356 		/* Power down the core */
357 		cps_pm_enter_state(CPS_PM_POWER_GATED);
358 	}
359 
360 	/* This should never be reached */
361 	panic("Failed to offline CPU %u", cpu);
362 }
363 
364 static void wait_for_sibling_halt(void *ptr_cpu)
365 {
366 	unsigned cpu = (unsigned)ptr_cpu;
367 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
368 	unsigned halted;
369 	unsigned long flags;
370 
371 	do {
372 		local_irq_save(flags);
373 		settc(vpe_id);
374 		halted = read_tc_c0_tchalt();
375 		local_irq_restore(flags);
376 	} while (!(halted & TCHALT_H));
377 }
378 
379 static void cps_cpu_die(unsigned int cpu)
380 {
381 	unsigned core = cpu_data[cpu].core;
382 	unsigned stat;
383 	int err;
384 
385 	/* Wait for the cpu to choose its way out */
386 	if (!wait_for_completion_timeout(&cpu_death_chosen,
387 					 msecs_to_jiffies(5000))) {
388 		pr_err("CPU%u: didn't offline\n", cpu);
389 		return;
390 	}
391 
392 	/*
393 	 * Now wait for the CPU to actually offline. Without doing this that
394 	 * offlining may race with one or more of:
395 	 *
396 	 *   - Onlining the CPU again.
397 	 *   - Powering down the core if another VPE within it is offlined.
398 	 *   - A sibling VPE entering a non-coherent state.
399 	 *
400 	 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
401 	 * with which we could race, so do nothing.
402 	 */
403 	if (cpu_death == CPU_DEATH_POWER) {
404 		/*
405 		 * Wait for the core to enter a powered down or clock gated
406 		 * state, the latter happening when a JTAG probe is connected
407 		 * in which case the CPC will refuse to power down the core.
408 		 */
409 		do {
410 			mips_cpc_lock_other(core);
411 			stat = read_cpc_co_stat_conf();
412 			stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
413 			mips_cpc_unlock_other();
414 		} while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
415 			 stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
416 			 stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);
417 
418 		/* Indicate the core is powered off */
419 		bitmap_clear(core_power, core, 1);
420 	} else if (cpu_has_mipsmt) {
421 		/*
422 		 * Have a CPU with access to the offlined CPUs registers wait
423 		 * for its TC to halt.
424 		 */
425 		err = smp_call_function_single(cpu_death_sibling,
426 					       wait_for_sibling_halt,
427 					       (void *)cpu, 1);
428 		if (err)
429 			panic("Failed to call remote sibling CPU\n");
430 	}
431 }
432 
433 #endif /* CONFIG_HOTPLUG_CPU */
434 
435 static struct plat_smp_ops cps_smp_ops = {
436 	.smp_setup		= cps_smp_setup,
437 	.prepare_cpus		= cps_prepare_cpus,
438 	.boot_secondary		= cps_boot_secondary,
439 	.init_secondary		= cps_init_secondary,
440 	.smp_finish		= cps_smp_finish,
441 	.send_ipi_single	= gic_send_ipi_single,
442 	.send_ipi_mask		= gic_send_ipi_mask,
443 #ifdef CONFIG_HOTPLUG_CPU
444 	.cpu_disable		= cps_cpu_disable,
445 	.cpu_die		= cps_cpu_die,
446 #endif
447 };
448 
449 bool mips_cps_smp_in_use(void)
450 {
451 	extern struct plat_smp_ops *mp_ops;
452 	return mp_ops == &cps_smp_ops;
453 }
454 
455 int register_cps_smp_ops(void)
456 {
457 	if (!mips_cm_present()) {
458 		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
459 		return -ENODEV;
460 	}
461 
462 	/* check we have a GIC - we need one for IPIs */
463 	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
464 		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
465 		return -ENODEV;
466 	}
467 
468 	register_smp_ops(&cps_smp_ops);
469 	return 0;
470 }
471