xref: /openbmc/linux/arch/mips/kernel/smp-cps.c (revision c4f7ac64)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2013 Imagination Technologies
4  * Author: Paul Burton <paul.burton@mips.com>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/delay.h>
9 #include <linux/io.h>
10 #include <linux/sched/task_stack.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/slab.h>
13 #include <linux/smp.h>
14 #include <linux/types.h>
15 #include <linux/irq.h>
16 
17 #include <asm/bcache.h>
18 #include <asm/mips-cps.h>
19 #include <asm/mips_mt.h>
20 #include <asm/mipsregs.h>
21 #include <asm/pm-cps.h>
22 #include <asm/r4kcache.h>
23 #include <asm/smp-cps.h>
24 #include <asm/time.h>
25 #include <asm/uasm.h>
26 
27 static bool threads_disabled;
28 static DECLARE_BITMAP(core_power, NR_CPUS);
29 
30 struct core_boot_config *mips_cps_core_bootcfg;
31 
32 static int __init setup_nothreads(char *s)
33 {
34 	threads_disabled = true;
35 	return 0;
36 }
37 early_param("nothreads", setup_nothreads);
38 
39 static unsigned core_vpe_count(unsigned int cluster, unsigned core)
40 {
41 	if (threads_disabled)
42 		return 1;
43 
44 	return mips_cps_numvps(cluster, core);
45 }
46 
47 static void __init cps_smp_setup(void)
48 {
49 	unsigned int nclusters, ncores, nvpes, core_vpes;
50 	unsigned long core_entry;
51 	int cl, c, v;
52 
53 	/* Detect & record VPE topology */
54 	nvpes = 0;
55 	nclusters = mips_cps_numclusters();
56 	pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
57 	for (cl = 0; cl < nclusters; cl++) {
58 		if (cl > 0)
59 			pr_cont(",");
60 		pr_cont("{");
61 
62 		ncores = mips_cps_numcores(cl);
63 		for (c = 0; c < ncores; c++) {
64 			core_vpes = core_vpe_count(cl, c);
65 
66 			if (c > 0)
67 				pr_cont(",");
68 			pr_cont("%u", core_vpes);
69 
70 			/* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
71 			if (!cl && !c)
72 				smp_num_siblings = core_vpes;
73 
74 			for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
75 				cpu_set_cluster(&cpu_data[nvpes + v], cl);
76 				cpu_set_core(&cpu_data[nvpes + v], c);
77 				cpu_set_vpe_id(&cpu_data[nvpes + v], v);
78 			}
79 
80 			nvpes += core_vpes;
81 		}
82 
83 		pr_cont("}");
84 	}
85 	pr_cont(" total %u\n", nvpes);
86 
87 	/* Indicate present CPUs (CPU being synonymous with VPE) */
88 	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
89 		set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0);
90 		set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0);
91 		__cpu_number_map[v] = v;
92 		__cpu_logical_map[v] = v;
93 	}
94 
95 	/* Set a coherent default CCA (CWB) */
96 	change_c0_config(CONF_CM_CMASK, 0x5);
97 
98 	/* Core 0 is powered up (we're running on it) */
99 	bitmap_set(core_power, 0, 1);
100 
101 	/* Initialise core 0 */
102 	mips_cps_core_init();
103 
104 	/* Make core 0 coherent with everything */
105 	write_gcr_cl_coherence(0xff);
106 
107 	if (mips_cm_revision() >= CM_REV_CM3) {
108 		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
109 		write_gcr_bev_base(core_entry);
110 	}
111 
112 #ifdef CONFIG_MIPS_MT_FPAFF
113 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
114 	if (cpu_has_fpu)
115 		cpumask_set_cpu(0, &mt_fpu_cpumask);
116 #endif /* CONFIG_MIPS_MT_FPAFF */
117 }
118 
119 static void __init cps_prepare_cpus(unsigned int max_cpus)
120 {
121 	unsigned ncores, core_vpes, c, cca;
122 	bool cca_unsuitable, cores_limited;
123 	u32 *entry_code;
124 
125 	mips_mt_set_cpuoptions();
126 
127 	/* Detect whether the CCA is unsuited to multi-core SMP */
128 	cca = read_c0_config() & CONF_CM_CMASK;
129 	switch (cca) {
130 	case 0x4: /* CWBE */
131 	case 0x5: /* CWB */
132 		/* The CCA is coherent, multi-core is fine */
133 		cca_unsuitable = false;
134 		break;
135 
136 	default:
137 		/* CCA is not coherent, multi-core is not usable */
138 		cca_unsuitable = true;
139 	}
140 
141 	/* Warn the user if the CCA prevents multi-core */
142 	cores_limited = false;
143 	if (cca_unsuitable || cpu_has_dc_aliases) {
144 		for_each_present_cpu(c) {
145 			if (cpus_are_siblings(smp_processor_id(), c))
146 				continue;
147 
148 			set_cpu_present(c, false);
149 			cores_limited = true;
150 		}
151 	}
152 	if (cores_limited)
153 		pr_warn("Using only one core due to %s%s%s\n",
154 			cca_unsuitable ? "unsuitable CCA" : "",
155 			(cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
156 			cpu_has_dc_aliases ? "dcache aliasing" : "");
157 
158 	/*
159 	 * Patch the start of mips_cps_core_entry to provide:
160 	 *
161 	 * s0 = kseg0 CCA
162 	 */
163 	entry_code = (u32 *)&mips_cps_core_entry;
164 	uasm_i_addiu(&entry_code, 16, 0, cca);
165 	blast_dcache_range((unsigned long)&mips_cps_core_entry,
166 			   (unsigned long)entry_code);
167 	bc_wback_inv((unsigned long)&mips_cps_core_entry,
168 		     (void *)entry_code - (void *)&mips_cps_core_entry);
169 	__sync();
170 
171 	/* Allocate core boot configuration structs */
172 	ncores = mips_cps_numcores(0);
173 	mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
174 					GFP_KERNEL);
175 	if (!mips_cps_core_bootcfg) {
176 		pr_err("Failed to allocate boot config for %u cores\n", ncores);
177 		goto err_out;
178 	}
179 
180 	/* Allocate VPE boot configuration structs */
181 	for (c = 0; c < ncores; c++) {
182 		core_vpes = core_vpe_count(0, c);
183 		mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
184 				sizeof(*mips_cps_core_bootcfg[c].vpe_config),
185 				GFP_KERNEL);
186 		if (!mips_cps_core_bootcfg[c].vpe_config) {
187 			pr_err("Failed to allocate %u VPE boot configs\n",
188 			       core_vpes);
189 			goto err_out;
190 		}
191 	}
192 
193 	/* Mark this CPU as booted */
194 	atomic_set(&mips_cps_core_bootcfg[cpu_core(&current_cpu_data)].vpe_mask,
195 		   1 << cpu_vpe_id(&current_cpu_data));
196 
197 	return;
198 err_out:
199 	/* Clean up allocations */
200 	if (mips_cps_core_bootcfg) {
201 		for (c = 0; c < ncores; c++)
202 			kfree(mips_cps_core_bootcfg[c].vpe_config);
203 		kfree(mips_cps_core_bootcfg);
204 		mips_cps_core_bootcfg = NULL;
205 	}
206 
207 	/* Effectively disable SMP by declaring CPUs not present */
208 	for_each_possible_cpu(c) {
209 		if (c == 0)
210 			continue;
211 		set_cpu_present(c, false);
212 	}
213 }
214 
215 static void boot_core(unsigned int core, unsigned int vpe_id)
216 {
217 	u32 stat, seq_state;
218 	unsigned timeout;
219 
220 	/* Select the appropriate core */
221 	mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
222 
223 	/* Set its reset vector */
224 	write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
225 
226 	/* Ensure its coherency is disabled */
227 	write_gcr_co_coherence(0);
228 
229 	/* Start it with the legacy memory map and exception base */
230 	write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
231 
232 	/* Ensure the core can access the GCRs */
233 	set_gcr_access(1 << core);
234 
235 	if (mips_cpc_present()) {
236 		/* Reset the core */
237 		mips_cpc_lock_other(core);
238 
239 		if (mips_cm_revision() >= CM_REV_CM3) {
240 			/* Run only the requested VP following the reset */
241 			write_cpc_co_vp_stop(0xf);
242 			write_cpc_co_vp_run(1 << vpe_id);
243 
244 			/*
245 			 * Ensure that the VP_RUN register is written before the
246 			 * core leaves reset.
247 			 */
248 			wmb();
249 		}
250 
251 		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
252 
253 		timeout = 100;
254 		while (true) {
255 			stat = read_cpc_co_stat_conf();
256 			seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
257 			seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
258 
259 			/* U6 == coherent execution, ie. the core is up */
260 			if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
261 				break;
262 
263 			/* Delay a little while before we start warning */
264 			if (timeout) {
265 				timeout--;
266 				mdelay(10);
267 				continue;
268 			}
269 
270 			pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
271 				core, stat);
272 			mdelay(1000);
273 		}
274 
275 		mips_cpc_unlock_other();
276 	} else {
277 		/* Take the core out of reset */
278 		write_gcr_co_reset_release(0);
279 	}
280 
281 	mips_cm_unlock_other();
282 
283 	/* The core is now powered up */
284 	bitmap_set(core_power, core, 1);
285 }
286 
287 static void remote_vpe_boot(void *dummy)
288 {
289 	unsigned core = cpu_core(&current_cpu_data);
290 	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
291 
292 	mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
293 }
294 
295 static int cps_boot_secondary(int cpu, struct task_struct *idle)
296 {
297 	unsigned core = cpu_core(&cpu_data[cpu]);
298 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
299 	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
300 	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
301 	unsigned long core_entry;
302 	unsigned int remote;
303 	int err;
304 
305 	/* We don't yet support booting CPUs in other clusters */
306 	if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data))
307 		return -ENOSYS;
308 
309 	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
310 	vpe_cfg->sp = __KSTK_TOS(idle);
311 	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
312 
313 	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
314 
315 	preempt_disable();
316 
317 	if (!test_bit(core, core_power)) {
318 		/* Boot a VPE on a powered down core */
319 		boot_core(core, vpe_id);
320 		goto out;
321 	}
322 
323 	if (cpu_has_vp) {
324 		mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
325 		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
326 		write_gcr_co_reset_base(core_entry);
327 		mips_cm_unlock_other();
328 	}
329 
330 	if (!cpus_are_siblings(cpu, smp_processor_id())) {
331 		/* Boot a VPE on another powered up core */
332 		for (remote = 0; remote < NR_CPUS; remote++) {
333 			if (!cpus_are_siblings(cpu, remote))
334 				continue;
335 			if (cpu_online(remote))
336 				break;
337 		}
338 		if (remote >= NR_CPUS) {
339 			pr_crit("No online CPU in core %u to start CPU%d\n",
340 				core, cpu);
341 			goto out;
342 		}
343 
344 		err = smp_call_function_single(remote, remote_vpe_boot,
345 					       NULL, 1);
346 		if (err)
347 			panic("Failed to call remote CPU\n");
348 		goto out;
349 	}
350 
351 	BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
352 
353 	/* Boot a VPE on this core */
354 	mips_cps_boot_vpes(core_cfg, vpe_id);
355 out:
356 	preempt_enable();
357 	return 0;
358 }
359 
360 static void cps_init_secondary(void)
361 {
362 	/* Disable MT - we only want to run 1 TC per VPE */
363 	if (cpu_has_mipsmt)
364 		dmt();
365 
366 	if (mips_cm_revision() >= CM_REV_CM3) {
367 		unsigned int ident = read_gic_vl_ident();
368 
369 		/*
370 		 * Ensure that our calculation of the VP ID matches up with
371 		 * what the GIC reports, otherwise we'll have configured
372 		 * interrupts incorrectly.
373 		 */
374 		BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
375 	}
376 
377 	if (cpu_has_veic)
378 		clear_c0_status(ST0_IM);
379 	else
380 		change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
381 					 STATUSF_IP4 | STATUSF_IP5 |
382 					 STATUSF_IP6 | STATUSF_IP7);
383 }
384 
385 static void cps_smp_finish(void)
386 {
387 	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
388 
389 #ifdef CONFIG_MIPS_MT_FPAFF
390 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
391 	if (cpu_has_fpu)
392 		cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
393 #endif /* CONFIG_MIPS_MT_FPAFF */
394 
395 	local_irq_enable();
396 }
397 
398 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC)
399 
400 enum cpu_death {
401 	CPU_DEATH_HALT,
402 	CPU_DEATH_POWER,
403 };
404 
405 static void cps_shutdown_this_cpu(enum cpu_death death)
406 {
407 	unsigned int cpu, core, vpe_id;
408 
409 	cpu = smp_processor_id();
410 	core = cpu_core(&cpu_data[cpu]);
411 
412 	if (death == CPU_DEATH_HALT) {
413 		vpe_id = cpu_vpe_id(&cpu_data[cpu]);
414 
415 		pr_debug("Halting core %d VP%d\n", core, vpe_id);
416 		if (cpu_has_mipsmt) {
417 			/* Halt this TC */
418 			write_c0_tchalt(TCHALT_H);
419 			instruction_hazard();
420 		} else if (cpu_has_vp) {
421 			write_cpc_cl_vp_stop(1 << vpe_id);
422 
423 			/* Ensure that the VP_STOP register is written */
424 			wmb();
425 		}
426 	} else {
427 		pr_debug("Gating power to core %d\n", core);
428 		/* Power down the core */
429 		cps_pm_enter_state(CPS_PM_POWER_GATED);
430 	}
431 }
432 
433 #ifdef CONFIG_KEXEC
434 
435 static void cps_kexec_nonboot_cpu(void)
436 {
437 	if (cpu_has_mipsmt || cpu_has_vp)
438 		cps_shutdown_this_cpu(CPU_DEATH_HALT);
439 	else
440 		cps_shutdown_this_cpu(CPU_DEATH_POWER);
441 }
442 
443 #endif /* CONFIG_KEXEC */
444 
445 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC */
446 
447 #ifdef CONFIG_HOTPLUG_CPU
448 
449 static int cps_cpu_disable(void)
450 {
451 	unsigned cpu = smp_processor_id();
452 	struct core_boot_config *core_cfg;
453 
454 	if (!cps_pm_support_state(CPS_PM_POWER_GATED))
455 		return -EINVAL;
456 
457 	core_cfg = &mips_cps_core_bootcfg[cpu_core(&current_cpu_data)];
458 	atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
459 	smp_mb__after_atomic();
460 	set_cpu_online(cpu, false);
461 	calculate_cpu_foreign_map();
462 	irq_migrate_all_off_this_cpu();
463 
464 	return 0;
465 }
466 
467 static unsigned cpu_death_sibling;
468 static enum cpu_death cpu_death;
469 
470 void play_dead(void)
471 {
472 	unsigned int cpu;
473 
474 	local_irq_disable();
475 	idle_task_exit();
476 	cpu = smp_processor_id();
477 	cpu_death = CPU_DEATH_POWER;
478 
479 	pr_debug("CPU%d going offline\n", cpu);
480 
481 	if (cpu_has_mipsmt || cpu_has_vp) {
482 		/* Look for another online VPE within the core */
483 		for_each_online_cpu(cpu_death_sibling) {
484 			if (!cpus_are_siblings(cpu, cpu_death_sibling))
485 				continue;
486 
487 			/*
488 			 * There is an online VPE within the core. Just halt
489 			 * this TC and leave the core alone.
490 			 */
491 			cpu_death = CPU_DEATH_HALT;
492 			break;
493 		}
494 	}
495 
496 	/* This CPU has chosen its way out */
497 	(void)cpu_report_death();
498 
499 	cps_shutdown_this_cpu(cpu_death);
500 
501 	/* This should never be reached */
502 	panic("Failed to offline CPU %u", cpu);
503 }
504 
505 static void wait_for_sibling_halt(void *ptr_cpu)
506 {
507 	unsigned cpu = (unsigned long)ptr_cpu;
508 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
509 	unsigned halted;
510 	unsigned long flags;
511 
512 	do {
513 		local_irq_save(flags);
514 		settc(vpe_id);
515 		halted = read_tc_c0_tchalt();
516 		local_irq_restore(flags);
517 	} while (!(halted & TCHALT_H));
518 }
519 
520 static void cps_cpu_die(unsigned int cpu)
521 {
522 	unsigned core = cpu_core(&cpu_data[cpu]);
523 	unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
524 	ktime_t fail_time;
525 	unsigned stat;
526 	int err;
527 
528 	/* Wait for the cpu to choose its way out */
529 	if (!cpu_wait_death(cpu, 5)) {
530 		pr_err("CPU%u: didn't offline\n", cpu);
531 		return;
532 	}
533 
534 	/*
535 	 * Now wait for the CPU to actually offline. Without doing this that
536 	 * offlining may race with one or more of:
537 	 *
538 	 *   - Onlining the CPU again.
539 	 *   - Powering down the core if another VPE within it is offlined.
540 	 *   - A sibling VPE entering a non-coherent state.
541 	 *
542 	 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
543 	 * with which we could race, so do nothing.
544 	 */
545 	if (cpu_death == CPU_DEATH_POWER) {
546 		/*
547 		 * Wait for the core to enter a powered down or clock gated
548 		 * state, the latter happening when a JTAG probe is connected
549 		 * in which case the CPC will refuse to power down the core.
550 		 */
551 		fail_time = ktime_add_ms(ktime_get(), 2000);
552 		do {
553 			mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
554 			mips_cpc_lock_other(core);
555 			stat = read_cpc_co_stat_conf();
556 			stat &= CPC_Cx_STAT_CONF_SEQSTATE;
557 			stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
558 			mips_cpc_unlock_other();
559 			mips_cm_unlock_other();
560 
561 			if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
562 			    stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
563 			    stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
564 				break;
565 
566 			/*
567 			 * The core ought to have powered down, but didn't &
568 			 * now we don't really know what state it's in. It's
569 			 * likely that its _pwr_up pin has been wired to logic
570 			 * 1 & it powered back up as soon as we powered it
571 			 * down...
572 			 *
573 			 * The best we can do is warn the user & continue in
574 			 * the hope that the core is doing nothing harmful &
575 			 * might behave properly if we online it later.
576 			 */
577 			if (WARN(ktime_after(ktime_get(), fail_time),
578 				 "CPU%u hasn't powered down, seq. state %u\n",
579 				 cpu, stat))
580 				break;
581 		} while (1);
582 
583 		/* Indicate the core is powered off */
584 		bitmap_clear(core_power, core, 1);
585 	} else if (cpu_has_mipsmt) {
586 		/*
587 		 * Have a CPU with access to the offlined CPUs registers wait
588 		 * for its TC to halt.
589 		 */
590 		err = smp_call_function_single(cpu_death_sibling,
591 					       wait_for_sibling_halt,
592 					       (void *)(unsigned long)cpu, 1);
593 		if (err)
594 			panic("Failed to call remote sibling CPU\n");
595 	} else if (cpu_has_vp) {
596 		do {
597 			mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
598 			stat = read_cpc_co_vp_running();
599 			mips_cm_unlock_other();
600 		} while (stat & (1 << vpe_id));
601 	}
602 }
603 
604 #endif /* CONFIG_HOTPLUG_CPU */
605 
606 static const struct plat_smp_ops cps_smp_ops = {
607 	.smp_setup		= cps_smp_setup,
608 	.prepare_cpus		= cps_prepare_cpus,
609 	.boot_secondary		= cps_boot_secondary,
610 	.init_secondary		= cps_init_secondary,
611 	.smp_finish		= cps_smp_finish,
612 	.send_ipi_single	= mips_smp_send_ipi_single,
613 	.send_ipi_mask		= mips_smp_send_ipi_mask,
614 #ifdef CONFIG_HOTPLUG_CPU
615 	.cpu_disable		= cps_cpu_disable,
616 	.cpu_die		= cps_cpu_die,
617 #endif
618 #ifdef CONFIG_KEXEC
619 	.kexec_nonboot_cpu	= cps_kexec_nonboot_cpu,
620 #endif
621 };
622 
623 bool mips_cps_smp_in_use(void)
624 {
625 	extern const struct plat_smp_ops *mp_ops;
626 	return mp_ops == &cps_smp_ops;
627 }
628 
629 int register_cps_smp_ops(void)
630 {
631 	if (!mips_cm_present()) {
632 		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
633 		return -ENODEV;
634 	}
635 
636 	/* check we have a GIC - we need one for IPIs */
637 	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
638 		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
639 		return -ENODEV;
640 	}
641 
642 	register_smp_ops(&cps_smp_ops);
643 	return 0;
644 }
645