xref: /openbmc/linux/arch/mips/kernel/smp-cps.c (revision 9cfc5c90)
1 /*
2  * Copyright (C) 2013 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/io.h>
13 #include <linux/irqchip/mips-gic.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/smp.h>
17 #include <linux/types.h>
18 
19 #include <asm/bcache.h>
20 #include <asm/mips-cm.h>
21 #include <asm/mips-cpc.h>
22 #include <asm/mips_mt.h>
23 #include <asm/mipsregs.h>
24 #include <asm/pm-cps.h>
25 #include <asm/r4kcache.h>
26 #include <asm/smp-cps.h>
27 #include <asm/time.h>
28 #include <asm/uasm.h>
29 
30 static DECLARE_BITMAP(core_power, NR_CPUS);
31 
32 struct core_boot_config *mips_cps_core_bootcfg;
33 
34 static unsigned core_vpe_count(unsigned core)
35 {
36 	unsigned cfg;
37 
38 	if (!config_enabled(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
39 		return 1;
40 
41 	mips_cm_lock_other(core, 0);
42 	cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
43 	mips_cm_unlock_other();
44 	return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
45 }
46 
47 static void __init cps_smp_setup(void)
48 {
49 	unsigned int ncores, nvpes, core_vpes;
50 	int c, v;
51 
52 	/* Detect & record VPE topology */
53 	ncores = mips_cm_numcores();
54 	pr_info("VPE topology ");
55 	for (c = nvpes = 0; c < ncores; c++) {
56 		core_vpes = core_vpe_count(c);
57 		pr_cont("%c%u", c ? ',' : '{', core_vpes);
58 
59 		/* Use the number of VPEs in core 0 for smp_num_siblings */
60 		if (!c)
61 			smp_num_siblings = core_vpes;
62 
63 		for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
64 			cpu_data[nvpes + v].core = c;
65 #ifdef CONFIG_MIPS_MT_SMP
66 			cpu_data[nvpes + v].vpe_id = v;
67 #endif
68 		}
69 
70 		nvpes += core_vpes;
71 	}
72 	pr_cont("} total %u\n", nvpes);
73 
74 	/* Indicate present CPUs (CPU being synonymous with VPE) */
75 	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
76 		set_cpu_possible(v, true);
77 		set_cpu_present(v, true);
78 		__cpu_number_map[v] = v;
79 		__cpu_logical_map[v] = v;
80 	}
81 
82 	/* Set a coherent default CCA (CWB) */
83 	change_c0_config(CONF_CM_CMASK, 0x5);
84 
85 	/* Core 0 is powered up (we're running on it) */
86 	bitmap_set(core_power, 0, 1);
87 
88 	/* Initialise core 0 */
89 	mips_cps_core_init();
90 
91 	/* Make core 0 coherent with everything */
92 	write_gcr_cl_coherence(0xff);
93 
94 #ifdef CONFIG_MIPS_MT_FPAFF
95 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
96 	if (cpu_has_fpu)
97 		cpumask_set_cpu(0, &mt_fpu_cpumask);
98 #endif /* CONFIG_MIPS_MT_FPAFF */
99 }
100 
101 static void __init cps_prepare_cpus(unsigned int max_cpus)
102 {
103 	unsigned ncores, core_vpes, c, cca;
104 	bool cca_unsuitable;
105 	u32 *entry_code;
106 
107 	mips_mt_set_cpuoptions();
108 
109 	/* Detect whether the CCA is unsuited to multi-core SMP */
110 	cca = read_c0_config() & CONF_CM_CMASK;
111 	switch (cca) {
112 	case 0x4: /* CWBE */
113 	case 0x5: /* CWB */
114 		/* The CCA is coherent, multi-core is fine */
115 		cca_unsuitable = false;
116 		break;
117 
118 	default:
119 		/* CCA is not coherent, multi-core is not usable */
120 		cca_unsuitable = true;
121 	}
122 
123 	/* Warn the user if the CCA prevents multi-core */
124 	ncores = mips_cm_numcores();
125 	if (cca_unsuitable && ncores > 1) {
126 		pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
127 			cca);
128 
129 		for_each_present_cpu(c) {
130 			if (cpu_data[c].core)
131 				set_cpu_present(c, false);
132 		}
133 	}
134 
135 	/*
136 	 * Patch the start of mips_cps_core_entry to provide:
137 	 *
138 	 * s0 = kseg0 CCA
139 	 */
140 	entry_code = (u32 *)&mips_cps_core_entry;
141 	uasm_i_addiu(&entry_code, 16, 0, cca);
142 	blast_dcache_range((unsigned long)&mips_cps_core_entry,
143 			   (unsigned long)entry_code);
144 	bc_wback_inv((unsigned long)&mips_cps_core_entry,
145 		     (void *)entry_code - (void *)&mips_cps_core_entry);
146 	__sync();
147 
148 	/* Allocate core boot configuration structs */
149 	mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
150 					GFP_KERNEL);
151 	if (!mips_cps_core_bootcfg) {
152 		pr_err("Failed to allocate boot config for %u cores\n", ncores);
153 		goto err_out;
154 	}
155 
156 	/* Allocate VPE boot configuration structs */
157 	for (c = 0; c < ncores; c++) {
158 		core_vpes = core_vpe_count(c);
159 		mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
160 				sizeof(*mips_cps_core_bootcfg[c].vpe_config),
161 				GFP_KERNEL);
162 		if (!mips_cps_core_bootcfg[c].vpe_config) {
163 			pr_err("Failed to allocate %u VPE boot configs\n",
164 			       core_vpes);
165 			goto err_out;
166 		}
167 	}
168 
169 	/* Mark this CPU as booted */
170 	atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
171 		   1 << cpu_vpe_id(&current_cpu_data));
172 
173 	return;
174 err_out:
175 	/* Clean up allocations */
176 	if (mips_cps_core_bootcfg) {
177 		for (c = 0; c < ncores; c++)
178 			kfree(mips_cps_core_bootcfg[c].vpe_config);
179 		kfree(mips_cps_core_bootcfg);
180 		mips_cps_core_bootcfg = NULL;
181 	}
182 
183 	/* Effectively disable SMP by declaring CPUs not present */
184 	for_each_possible_cpu(c) {
185 		if (c == 0)
186 			continue;
187 		set_cpu_present(c, false);
188 	}
189 }
190 
191 static void boot_core(unsigned core)
192 {
193 	u32 access, stat, seq_state;
194 	unsigned timeout;
195 
196 	/* Select the appropriate core */
197 	mips_cm_lock_other(core, 0);
198 
199 	/* Set its reset vector */
200 	write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
201 
202 	/* Ensure its coherency is disabled */
203 	write_gcr_co_coherence(0);
204 
205 	/* Ensure the core can access the GCRs */
206 	access = read_gcr_access();
207 	access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
208 	write_gcr_access(access);
209 
210 	if (mips_cpc_present()) {
211 		/* Reset the core */
212 		mips_cpc_lock_other(core);
213 		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
214 
215 		timeout = 100;
216 		while (true) {
217 			stat = read_cpc_co_stat_conf();
218 			seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE_MSK;
219 
220 			/* U6 == coherent execution, ie. the core is up */
221 			if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
222 				break;
223 
224 			/* Delay a little while before we start warning */
225 			if (timeout) {
226 				timeout--;
227 				mdelay(10);
228 				continue;
229 			}
230 
231 			pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
232 				core, stat);
233 			mdelay(1000);
234 		}
235 
236 		mips_cpc_unlock_other();
237 	} else {
238 		/* Take the core out of reset */
239 		write_gcr_co_reset_release(0);
240 	}
241 
242 	mips_cm_unlock_other();
243 
244 	/* The core is now powered up */
245 	bitmap_set(core_power, core, 1);
246 }
247 
248 static void remote_vpe_boot(void *dummy)
249 {
250 	mips_cps_boot_vpes();
251 }
252 
253 static void cps_boot_secondary(int cpu, struct task_struct *idle)
254 {
255 	unsigned core = cpu_data[cpu].core;
256 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
257 	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
258 	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
259 	unsigned int remote;
260 	int err;
261 
262 	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
263 	vpe_cfg->sp = __KSTK_TOS(idle);
264 	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
265 
266 	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
267 
268 	preempt_disable();
269 
270 	if (!test_bit(core, core_power)) {
271 		/* Boot a VPE on a powered down core */
272 		boot_core(core);
273 		goto out;
274 	}
275 
276 	if (core != current_cpu_data.core) {
277 		/* Boot a VPE on another powered up core */
278 		for (remote = 0; remote < NR_CPUS; remote++) {
279 			if (cpu_data[remote].core != core)
280 				continue;
281 			if (cpu_online(remote))
282 				break;
283 		}
284 		BUG_ON(remote >= NR_CPUS);
285 
286 		err = smp_call_function_single(remote, remote_vpe_boot,
287 					       NULL, 1);
288 		if (err)
289 			panic("Failed to call remote CPU\n");
290 		goto out;
291 	}
292 
293 	BUG_ON(!cpu_has_mipsmt);
294 
295 	/* Boot a VPE on this core */
296 	mips_cps_boot_vpes();
297 out:
298 	preempt_enable();
299 }
300 
301 static void cps_init_secondary(void)
302 {
303 	/* Disable MT - we only want to run 1 TC per VPE */
304 	if (cpu_has_mipsmt)
305 		dmt();
306 
307 	change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 | STATUSF_IP4 |
308 				 STATUSF_IP5 | STATUSF_IP6 | STATUSF_IP7);
309 }
310 
311 static void cps_smp_finish(void)
312 {
313 	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
314 
315 #ifdef CONFIG_MIPS_MT_FPAFF
316 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
317 	if (cpu_has_fpu)
318 		cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
319 #endif /* CONFIG_MIPS_MT_FPAFF */
320 
321 	local_irq_enable();
322 }
323 
324 #ifdef CONFIG_HOTPLUG_CPU
325 
326 static int cps_cpu_disable(void)
327 {
328 	unsigned cpu = smp_processor_id();
329 	struct core_boot_config *core_cfg;
330 
331 	if (!cpu)
332 		return -EBUSY;
333 
334 	if (!cps_pm_support_state(CPS_PM_POWER_GATED))
335 		return -EINVAL;
336 
337 	core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
338 	atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
339 	smp_mb__after_atomic();
340 	set_cpu_online(cpu, false);
341 	cpumask_clear_cpu(cpu, &cpu_callin_map);
342 
343 	return 0;
344 }
345 
346 static DECLARE_COMPLETION(cpu_death_chosen);
347 static unsigned cpu_death_sibling;
348 static enum {
349 	CPU_DEATH_HALT,
350 	CPU_DEATH_POWER,
351 } cpu_death;
352 
353 void play_dead(void)
354 {
355 	unsigned cpu, core;
356 
357 	local_irq_disable();
358 	idle_task_exit();
359 	cpu = smp_processor_id();
360 	cpu_death = CPU_DEATH_POWER;
361 
362 	if (cpu_has_mipsmt) {
363 		core = cpu_data[cpu].core;
364 
365 		/* Look for another online VPE within the core */
366 		for_each_online_cpu(cpu_death_sibling) {
367 			if (cpu_data[cpu_death_sibling].core != core)
368 				continue;
369 
370 			/*
371 			 * There is an online VPE within the core. Just halt
372 			 * this TC and leave the core alone.
373 			 */
374 			cpu_death = CPU_DEATH_HALT;
375 			break;
376 		}
377 	}
378 
379 	/* This CPU has chosen its way out */
380 	complete(&cpu_death_chosen);
381 
382 	if (cpu_death == CPU_DEATH_HALT) {
383 		/* Halt this TC */
384 		write_c0_tchalt(TCHALT_H);
385 		instruction_hazard();
386 	} else {
387 		/* Power down the core */
388 		cps_pm_enter_state(CPS_PM_POWER_GATED);
389 	}
390 
391 	/* This should never be reached */
392 	panic("Failed to offline CPU %u", cpu);
393 }
394 
395 static void wait_for_sibling_halt(void *ptr_cpu)
396 {
397 	unsigned cpu = (unsigned long)ptr_cpu;
398 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
399 	unsigned halted;
400 	unsigned long flags;
401 
402 	do {
403 		local_irq_save(flags);
404 		settc(vpe_id);
405 		halted = read_tc_c0_tchalt();
406 		local_irq_restore(flags);
407 	} while (!(halted & TCHALT_H));
408 }
409 
410 static void cps_cpu_die(unsigned int cpu)
411 {
412 	unsigned core = cpu_data[cpu].core;
413 	unsigned stat;
414 	int err;
415 
416 	/* Wait for the cpu to choose its way out */
417 	if (!wait_for_completion_timeout(&cpu_death_chosen,
418 					 msecs_to_jiffies(5000))) {
419 		pr_err("CPU%u: didn't offline\n", cpu);
420 		return;
421 	}
422 
423 	/*
424 	 * Now wait for the CPU to actually offline. Without doing this that
425 	 * offlining may race with one or more of:
426 	 *
427 	 *   - Onlining the CPU again.
428 	 *   - Powering down the core if another VPE within it is offlined.
429 	 *   - A sibling VPE entering a non-coherent state.
430 	 *
431 	 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
432 	 * with which we could race, so do nothing.
433 	 */
434 	if (cpu_death == CPU_DEATH_POWER) {
435 		/*
436 		 * Wait for the core to enter a powered down or clock gated
437 		 * state, the latter happening when a JTAG probe is connected
438 		 * in which case the CPC will refuse to power down the core.
439 		 */
440 		do {
441 			mips_cpc_lock_other(core);
442 			stat = read_cpc_co_stat_conf();
443 			stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
444 			mips_cpc_unlock_other();
445 		} while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
446 			 stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
447 			 stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);
448 
449 		/* Indicate the core is powered off */
450 		bitmap_clear(core_power, core, 1);
451 	} else if (cpu_has_mipsmt) {
452 		/*
453 		 * Have a CPU with access to the offlined CPUs registers wait
454 		 * for its TC to halt.
455 		 */
456 		err = smp_call_function_single(cpu_death_sibling,
457 					       wait_for_sibling_halt,
458 					       (void *)(unsigned long)cpu, 1);
459 		if (err)
460 			panic("Failed to call remote sibling CPU\n");
461 	}
462 }
463 
464 #endif /* CONFIG_HOTPLUG_CPU */
465 
466 static struct plat_smp_ops cps_smp_ops = {
467 	.smp_setup		= cps_smp_setup,
468 	.prepare_cpus		= cps_prepare_cpus,
469 	.boot_secondary		= cps_boot_secondary,
470 	.init_secondary		= cps_init_secondary,
471 	.smp_finish		= cps_smp_finish,
472 	.send_ipi_single	= gic_send_ipi_single,
473 	.send_ipi_mask		= gic_send_ipi_mask,
474 #ifdef CONFIG_HOTPLUG_CPU
475 	.cpu_disable		= cps_cpu_disable,
476 	.cpu_die		= cps_cpu_die,
477 #endif
478 };
479 
480 bool mips_cps_smp_in_use(void)
481 {
482 	extern struct plat_smp_ops *mp_ops;
483 	return mp_ops == &cps_smp_ops;
484 }
485 
486 int register_cps_smp_ops(void)
487 {
488 	if (!mips_cm_present()) {
489 		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
490 		return -ENODEV;
491 	}
492 
493 	/* check we have a GIC - we need one for IPIs */
494 	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
495 		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
496 		return -ENODEV;
497 	}
498 
499 	register_smp_ops(&cps_smp_ops);
500 	return 0;
501 }
502