xref: /openbmc/linux/arch/mips/kernel/smp-cps.c (revision 2fa5ebe3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2013 Imagination Technologies
4  * Author: Paul Burton <paul.burton@mips.com>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/delay.h>
9 #include <linux/io.h>
10 #include <linux/sched/task_stack.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/slab.h>
13 #include <linux/smp.h>
14 #include <linux/types.h>
15 #include <linux/irq.h>
16 
17 #include <asm/bcache.h>
18 #include <asm/mips-cps.h>
19 #include <asm/mips_mt.h>
20 #include <asm/mipsregs.h>
21 #include <asm/pm-cps.h>
22 #include <asm/r4kcache.h>
23 #include <asm/smp-cps.h>
24 #include <asm/time.h>
25 #include <asm/uasm.h>
26 
27 static bool threads_disabled;
28 static DECLARE_BITMAP(core_power, NR_CPUS);
29 
30 struct core_boot_config *mips_cps_core_bootcfg;
31 
32 static int __init setup_nothreads(char *s)
33 {
34 	threads_disabled = true;
35 	return 0;
36 }
37 early_param("nothreads", setup_nothreads);
38 
39 static unsigned core_vpe_count(unsigned int cluster, unsigned core)
40 {
41 	if (threads_disabled)
42 		return 1;
43 
44 	return mips_cps_numvps(cluster, core);
45 }
46 
47 static void __init cps_smp_setup(void)
48 {
49 	unsigned int nclusters, ncores, nvpes, core_vpes;
50 	unsigned long core_entry;
51 	int cl, c, v;
52 
53 	/* Detect & record VPE topology */
54 	nvpes = 0;
55 	nclusters = mips_cps_numclusters();
56 	pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
57 	for (cl = 0; cl < nclusters; cl++) {
58 		if (cl > 0)
59 			pr_cont(",");
60 		pr_cont("{");
61 
62 		ncores = mips_cps_numcores(cl);
63 		for (c = 0; c < ncores; c++) {
64 			core_vpes = core_vpe_count(cl, c);
65 
66 			if (c > 0)
67 				pr_cont(",");
68 			pr_cont("%u", core_vpes);
69 
70 			/* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
71 			if (!cl && !c)
72 				smp_num_siblings = core_vpes;
73 
74 			for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
75 				cpu_set_cluster(&cpu_data[nvpes + v], cl);
76 				cpu_set_core(&cpu_data[nvpes + v], c);
77 				cpu_set_vpe_id(&cpu_data[nvpes + v], v);
78 			}
79 
80 			nvpes += core_vpes;
81 		}
82 
83 		pr_cont("}");
84 	}
85 	pr_cont(" total %u\n", nvpes);
86 
87 	/* Indicate present CPUs (CPU being synonymous with VPE) */
88 	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
89 		set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0);
90 		set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0);
91 		__cpu_number_map[v] = v;
92 		__cpu_logical_map[v] = v;
93 	}
94 
95 	/* Set a coherent default CCA (CWB) */
96 	change_c0_config(CONF_CM_CMASK, 0x5);
97 
98 	/* Core 0 is powered up (we're running on it) */
99 	bitmap_set(core_power, 0, 1);
100 
101 	/* Initialise core 0 */
102 	mips_cps_core_init();
103 
104 	/* Make core 0 coherent with everything */
105 	write_gcr_cl_coherence(0xff);
106 
107 	if (mips_cm_revision() >= CM_REV_CM3) {
108 		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
109 		write_gcr_bev_base(core_entry);
110 	}
111 
112 #ifdef CONFIG_MIPS_MT_FPAFF
113 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
114 	if (cpu_has_fpu)
115 		cpumask_set_cpu(0, &mt_fpu_cpumask);
116 #endif /* CONFIG_MIPS_MT_FPAFF */
117 }
118 
119 static void __init cps_prepare_cpus(unsigned int max_cpus)
120 {
121 	unsigned ncores, core_vpes, c, cca;
122 	bool cca_unsuitable, cores_limited;
123 	u32 *entry_code;
124 
125 	mips_mt_set_cpuoptions();
126 
127 	/* Detect whether the CCA is unsuited to multi-core SMP */
128 	cca = read_c0_config() & CONF_CM_CMASK;
129 	switch (cca) {
130 	case 0x4: /* CWBE */
131 	case 0x5: /* CWB */
132 		/* The CCA is coherent, multi-core is fine */
133 		cca_unsuitable = false;
134 		break;
135 
136 	default:
137 		/* CCA is not coherent, multi-core is not usable */
138 		cca_unsuitable = true;
139 	}
140 
141 	/* Warn the user if the CCA prevents multi-core */
142 	cores_limited = false;
143 	if (cca_unsuitable || cpu_has_dc_aliases) {
144 		for_each_present_cpu(c) {
145 			if (cpus_are_siblings(smp_processor_id(), c))
146 				continue;
147 
148 			set_cpu_present(c, false);
149 			cores_limited = true;
150 		}
151 	}
152 	if (cores_limited)
153 		pr_warn("Using only one core due to %s%s%s\n",
154 			cca_unsuitable ? "unsuitable CCA" : "",
155 			(cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
156 			cpu_has_dc_aliases ? "dcache aliasing" : "");
157 
158 	/*
159 	 * Patch the start of mips_cps_core_entry to provide:
160 	 *
161 	 * s0 = kseg0 CCA
162 	 */
163 	entry_code = (u32 *)&mips_cps_core_entry;
164 	uasm_i_addiu(&entry_code, 16, 0, cca);
165 	UASM_i_LA(&entry_code, 17, (long)mips_gcr_base);
166 	BUG_ON((void *)entry_code > (void *)&mips_cps_core_entry_patch_end);
167 	blast_dcache_range((unsigned long)&mips_cps_core_entry,
168 			   (unsigned long)entry_code);
169 	bc_wback_inv((unsigned long)&mips_cps_core_entry,
170 		     (void *)entry_code - (void *)&mips_cps_core_entry);
171 	__sync();
172 
173 	/* Allocate core boot configuration structs */
174 	ncores = mips_cps_numcores(0);
175 	mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
176 					GFP_KERNEL);
177 	if (!mips_cps_core_bootcfg) {
178 		pr_err("Failed to allocate boot config for %u cores\n", ncores);
179 		goto err_out;
180 	}
181 
182 	/* Allocate VPE boot configuration structs */
183 	for (c = 0; c < ncores; c++) {
184 		core_vpes = core_vpe_count(0, c);
185 		mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
186 				sizeof(*mips_cps_core_bootcfg[c].vpe_config),
187 				GFP_KERNEL);
188 		if (!mips_cps_core_bootcfg[c].vpe_config) {
189 			pr_err("Failed to allocate %u VPE boot configs\n",
190 			       core_vpes);
191 			goto err_out;
192 		}
193 	}
194 
195 	/* Mark this CPU as booted */
196 	atomic_set(&mips_cps_core_bootcfg[cpu_core(&current_cpu_data)].vpe_mask,
197 		   1 << cpu_vpe_id(&current_cpu_data));
198 
199 	return;
200 err_out:
201 	/* Clean up allocations */
202 	if (mips_cps_core_bootcfg) {
203 		for (c = 0; c < ncores; c++)
204 			kfree(mips_cps_core_bootcfg[c].vpe_config);
205 		kfree(mips_cps_core_bootcfg);
206 		mips_cps_core_bootcfg = NULL;
207 	}
208 
209 	/* Effectively disable SMP by declaring CPUs not present */
210 	for_each_possible_cpu(c) {
211 		if (c == 0)
212 			continue;
213 		set_cpu_present(c, false);
214 	}
215 }
216 
217 static void boot_core(unsigned int core, unsigned int vpe_id)
218 {
219 	u32 stat, seq_state;
220 	unsigned timeout;
221 
222 	/* Select the appropriate core */
223 	mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
224 
225 	/* Set its reset vector */
226 	write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
227 
228 	/* Ensure its coherency is disabled */
229 	write_gcr_co_coherence(0);
230 
231 	/* Start it with the legacy memory map and exception base */
232 	write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
233 
234 	/* Ensure the core can access the GCRs */
235 	set_gcr_access(1 << core);
236 
237 	if (mips_cpc_present()) {
238 		/* Reset the core */
239 		mips_cpc_lock_other(core);
240 
241 		if (mips_cm_revision() >= CM_REV_CM3) {
242 			/* Run only the requested VP following the reset */
243 			write_cpc_co_vp_stop(0xf);
244 			write_cpc_co_vp_run(1 << vpe_id);
245 
246 			/*
247 			 * Ensure that the VP_RUN register is written before the
248 			 * core leaves reset.
249 			 */
250 			wmb();
251 		}
252 
253 		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
254 
255 		timeout = 100;
256 		while (true) {
257 			stat = read_cpc_co_stat_conf();
258 			seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
259 			seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
260 
261 			/* U6 == coherent execution, ie. the core is up */
262 			if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
263 				break;
264 
265 			/* Delay a little while before we start warning */
266 			if (timeout) {
267 				timeout--;
268 				mdelay(10);
269 				continue;
270 			}
271 
272 			pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
273 				core, stat);
274 			mdelay(1000);
275 		}
276 
277 		mips_cpc_unlock_other();
278 	} else {
279 		/* Take the core out of reset */
280 		write_gcr_co_reset_release(0);
281 	}
282 
283 	mips_cm_unlock_other();
284 
285 	/* The core is now powered up */
286 	bitmap_set(core_power, core, 1);
287 }
288 
289 static void remote_vpe_boot(void *dummy)
290 {
291 	unsigned core = cpu_core(&current_cpu_data);
292 	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
293 
294 	mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
295 }
296 
297 static int cps_boot_secondary(int cpu, struct task_struct *idle)
298 {
299 	unsigned core = cpu_core(&cpu_data[cpu]);
300 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
301 	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
302 	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
303 	unsigned long core_entry;
304 	unsigned int remote;
305 	int err;
306 
307 	/* We don't yet support booting CPUs in other clusters */
308 	if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data))
309 		return -ENOSYS;
310 
311 	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
312 	vpe_cfg->sp = __KSTK_TOS(idle);
313 	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
314 
315 	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
316 
317 	preempt_disable();
318 
319 	if (!test_bit(core, core_power)) {
320 		/* Boot a VPE on a powered down core */
321 		boot_core(core, vpe_id);
322 		goto out;
323 	}
324 
325 	if (cpu_has_vp) {
326 		mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
327 		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
328 		write_gcr_co_reset_base(core_entry);
329 		mips_cm_unlock_other();
330 	}
331 
332 	if (!cpus_are_siblings(cpu, smp_processor_id())) {
333 		/* Boot a VPE on another powered up core */
334 		for (remote = 0; remote < NR_CPUS; remote++) {
335 			if (!cpus_are_siblings(cpu, remote))
336 				continue;
337 			if (cpu_online(remote))
338 				break;
339 		}
340 		if (remote >= NR_CPUS) {
341 			pr_crit("No online CPU in core %u to start CPU%d\n",
342 				core, cpu);
343 			goto out;
344 		}
345 
346 		err = smp_call_function_single(remote, remote_vpe_boot,
347 					       NULL, 1);
348 		if (err)
349 			panic("Failed to call remote CPU\n");
350 		goto out;
351 	}
352 
353 	BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
354 
355 	/* Boot a VPE on this core */
356 	mips_cps_boot_vpes(core_cfg, vpe_id);
357 out:
358 	preempt_enable();
359 	return 0;
360 }
361 
362 static void cps_init_secondary(void)
363 {
364 	/* Disable MT - we only want to run 1 TC per VPE */
365 	if (cpu_has_mipsmt)
366 		dmt();
367 
368 	if (mips_cm_revision() >= CM_REV_CM3) {
369 		unsigned int ident = read_gic_vl_ident();
370 
371 		/*
372 		 * Ensure that our calculation of the VP ID matches up with
373 		 * what the GIC reports, otherwise we'll have configured
374 		 * interrupts incorrectly.
375 		 */
376 		BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
377 	}
378 
379 	if (cpu_has_veic)
380 		clear_c0_status(ST0_IM);
381 	else
382 		change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
383 					 STATUSF_IP4 | STATUSF_IP5 |
384 					 STATUSF_IP6 | STATUSF_IP7);
385 }
386 
387 static void cps_smp_finish(void)
388 {
389 	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
390 
391 #ifdef CONFIG_MIPS_MT_FPAFF
392 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
393 	if (cpu_has_fpu)
394 		cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
395 #endif /* CONFIG_MIPS_MT_FPAFF */
396 
397 	local_irq_enable();
398 }
399 
400 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC)
401 
402 enum cpu_death {
403 	CPU_DEATH_HALT,
404 	CPU_DEATH_POWER,
405 };
406 
407 static void cps_shutdown_this_cpu(enum cpu_death death)
408 {
409 	unsigned int cpu, core, vpe_id;
410 
411 	cpu = smp_processor_id();
412 	core = cpu_core(&cpu_data[cpu]);
413 
414 	if (death == CPU_DEATH_HALT) {
415 		vpe_id = cpu_vpe_id(&cpu_data[cpu]);
416 
417 		pr_debug("Halting core %d VP%d\n", core, vpe_id);
418 		if (cpu_has_mipsmt) {
419 			/* Halt this TC */
420 			write_c0_tchalt(TCHALT_H);
421 			instruction_hazard();
422 		} else if (cpu_has_vp) {
423 			write_cpc_cl_vp_stop(1 << vpe_id);
424 
425 			/* Ensure that the VP_STOP register is written */
426 			wmb();
427 		}
428 	} else {
429 		if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
430 			pr_debug("Gating power to core %d\n", core);
431 			/* Power down the core */
432 			cps_pm_enter_state(CPS_PM_POWER_GATED);
433 		}
434 	}
435 }
436 
437 #ifdef CONFIG_KEXEC
438 
439 static void cps_kexec_nonboot_cpu(void)
440 {
441 	if (cpu_has_mipsmt || cpu_has_vp)
442 		cps_shutdown_this_cpu(CPU_DEATH_HALT);
443 	else
444 		cps_shutdown_this_cpu(CPU_DEATH_POWER);
445 }
446 
447 #endif /* CONFIG_KEXEC */
448 
449 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC */
450 
451 #ifdef CONFIG_HOTPLUG_CPU
452 
453 static int cps_cpu_disable(void)
454 {
455 	unsigned cpu = smp_processor_id();
456 	struct core_boot_config *core_cfg;
457 
458 	if (!cps_pm_support_state(CPS_PM_POWER_GATED))
459 		return -EINVAL;
460 
461 	core_cfg = &mips_cps_core_bootcfg[cpu_core(&current_cpu_data)];
462 	atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
463 	smp_mb__after_atomic();
464 	set_cpu_online(cpu, false);
465 	calculate_cpu_foreign_map();
466 	irq_migrate_all_off_this_cpu();
467 
468 	return 0;
469 }
470 
471 static unsigned cpu_death_sibling;
472 static enum cpu_death cpu_death;
473 
474 void play_dead(void)
475 {
476 	unsigned int cpu;
477 
478 	local_irq_disable();
479 	idle_task_exit();
480 	cpu = smp_processor_id();
481 	cpu_death = CPU_DEATH_POWER;
482 
483 	pr_debug("CPU%d going offline\n", cpu);
484 
485 	if (cpu_has_mipsmt || cpu_has_vp) {
486 		/* Look for another online VPE within the core */
487 		for_each_online_cpu(cpu_death_sibling) {
488 			if (!cpus_are_siblings(cpu, cpu_death_sibling))
489 				continue;
490 
491 			/*
492 			 * There is an online VPE within the core. Just halt
493 			 * this TC and leave the core alone.
494 			 */
495 			cpu_death = CPU_DEATH_HALT;
496 			break;
497 		}
498 	}
499 
500 	/* This CPU has chosen its way out */
501 	(void)cpu_report_death();
502 
503 	cps_shutdown_this_cpu(cpu_death);
504 
505 	/* This should never be reached */
506 	panic("Failed to offline CPU %u", cpu);
507 }
508 
509 static void wait_for_sibling_halt(void *ptr_cpu)
510 {
511 	unsigned cpu = (unsigned long)ptr_cpu;
512 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
513 	unsigned halted;
514 	unsigned long flags;
515 
516 	do {
517 		local_irq_save(flags);
518 		settc(vpe_id);
519 		halted = read_tc_c0_tchalt();
520 		local_irq_restore(flags);
521 	} while (!(halted & TCHALT_H));
522 }
523 
524 static void cps_cpu_die(unsigned int cpu)
525 {
526 	unsigned core = cpu_core(&cpu_data[cpu]);
527 	unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
528 	ktime_t fail_time;
529 	unsigned stat;
530 	int err;
531 
532 	/* Wait for the cpu to choose its way out */
533 	if (!cpu_wait_death(cpu, 5)) {
534 		pr_err("CPU%u: didn't offline\n", cpu);
535 		return;
536 	}
537 
538 	/*
539 	 * Now wait for the CPU to actually offline. Without doing this that
540 	 * offlining may race with one or more of:
541 	 *
542 	 *   - Onlining the CPU again.
543 	 *   - Powering down the core if another VPE within it is offlined.
544 	 *   - A sibling VPE entering a non-coherent state.
545 	 *
546 	 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
547 	 * with which we could race, so do nothing.
548 	 */
549 	if (cpu_death == CPU_DEATH_POWER) {
550 		/*
551 		 * Wait for the core to enter a powered down or clock gated
552 		 * state, the latter happening when a JTAG probe is connected
553 		 * in which case the CPC will refuse to power down the core.
554 		 */
555 		fail_time = ktime_add_ms(ktime_get(), 2000);
556 		do {
557 			mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
558 			mips_cpc_lock_other(core);
559 			stat = read_cpc_co_stat_conf();
560 			stat &= CPC_Cx_STAT_CONF_SEQSTATE;
561 			stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
562 			mips_cpc_unlock_other();
563 			mips_cm_unlock_other();
564 
565 			if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
566 			    stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
567 			    stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
568 				break;
569 
570 			/*
571 			 * The core ought to have powered down, but didn't &
572 			 * now we don't really know what state it's in. It's
573 			 * likely that its _pwr_up pin has been wired to logic
574 			 * 1 & it powered back up as soon as we powered it
575 			 * down...
576 			 *
577 			 * The best we can do is warn the user & continue in
578 			 * the hope that the core is doing nothing harmful &
579 			 * might behave properly if we online it later.
580 			 */
581 			if (WARN(ktime_after(ktime_get(), fail_time),
582 				 "CPU%u hasn't powered down, seq. state %u\n",
583 				 cpu, stat))
584 				break;
585 		} while (1);
586 
587 		/* Indicate the core is powered off */
588 		bitmap_clear(core_power, core, 1);
589 	} else if (cpu_has_mipsmt) {
590 		/*
591 		 * Have a CPU with access to the offlined CPUs registers wait
592 		 * for its TC to halt.
593 		 */
594 		err = smp_call_function_single(cpu_death_sibling,
595 					       wait_for_sibling_halt,
596 					       (void *)(unsigned long)cpu, 1);
597 		if (err)
598 			panic("Failed to call remote sibling CPU\n");
599 	} else if (cpu_has_vp) {
600 		do {
601 			mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
602 			stat = read_cpc_co_vp_running();
603 			mips_cm_unlock_other();
604 		} while (stat & (1 << vpe_id));
605 	}
606 }
607 
608 #endif /* CONFIG_HOTPLUG_CPU */
609 
610 static const struct plat_smp_ops cps_smp_ops = {
611 	.smp_setup		= cps_smp_setup,
612 	.prepare_cpus		= cps_prepare_cpus,
613 	.boot_secondary		= cps_boot_secondary,
614 	.init_secondary		= cps_init_secondary,
615 	.smp_finish		= cps_smp_finish,
616 	.send_ipi_single	= mips_smp_send_ipi_single,
617 	.send_ipi_mask		= mips_smp_send_ipi_mask,
618 #ifdef CONFIG_HOTPLUG_CPU
619 	.cpu_disable		= cps_cpu_disable,
620 	.cpu_die		= cps_cpu_die,
621 #endif
622 #ifdef CONFIG_KEXEC
623 	.kexec_nonboot_cpu	= cps_kexec_nonboot_cpu,
624 #endif
625 };
626 
627 bool mips_cps_smp_in_use(void)
628 {
629 	extern const struct plat_smp_ops *mp_ops;
630 	return mp_ops == &cps_smp_ops;
631 }
632 
633 int register_cps_smp_ops(void)
634 {
635 	if (!mips_cm_present()) {
636 		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
637 		return -ENODEV;
638 	}
639 
640 	/* check we have a GIC - we need one for IPIs */
641 	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
642 		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
643 		return -ENODEV;
644 	}
645 
646 	register_smp_ops(&cps_smp_ops);
647 	return 0;
648 }
649