xref: /openbmc/linux/arch/mips/kernel/smp-bmips.c (revision c79fe9b436690209954f908a41b19e0bf575877a)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10 
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/sched/hotplug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/mm.h>
16 #include <linux/delay.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/cpu.h>
21 #include <linux/cpumask.h>
22 #include <linux/reboot.h>
23 #include <linux/io.h>
24 #include <linux/compiler.h>
25 #include <linux/linkage.h>
26 #include <linux/bug.h>
27 #include <linux/kernel.h>
28 #include <linux/kexec.h>
29 
30 #include <asm/time.h>
31 #include <asm/processor.h>
32 #include <asm/bootinfo.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlbflush.h>
35 #include <asm/mipsregs.h>
36 #include <asm/bmips.h>
37 #include <asm/traps.h>
38 #include <asm/barrier.h>
39 #include <asm/cpu-features.h>
40 
41 static int __maybe_unused max_cpus = 1;
42 
43 /* these may be configured by the platform code */
44 int bmips_smp_enabled = 1;
45 int bmips_cpu_offset;
46 cpumask_t bmips_booted_mask;
47 unsigned long bmips_tp1_irqs = IE_IRQ1;
48 
49 #define RESET_FROM_KSEG0		0x80080800
50 #define RESET_FROM_KSEG1		0xa0080800
51 
52 static void bmips_set_reset_vec(int cpu, u32 val);
53 
54 #ifdef CONFIG_SMP
55 
56 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
57 unsigned long bmips_smp_boot_sp;
58 unsigned long bmips_smp_boot_gp;
59 
60 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
61 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
62 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
63 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
64 
65 /* SW interrupts 0,1 are used for interprocessor signaling */
66 #define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
67 #define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
68 
69 #define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
70 #define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
71 #define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
72 #define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
73 
74 static void __init bmips_smp_setup(void)
75 {
76 	int i, cpu = 1, boot_cpu = 0;
77 	int cpu_hw_intr;
78 
79 	switch (current_cpu_type()) {
80 	case CPU_BMIPS4350:
81 	case CPU_BMIPS4380:
82 		/* arbitration priority */
83 		clear_c0_brcm_cmt_ctrl(0x30);
84 
85 		/* NBK and weak order flags */
86 		set_c0_brcm_config_0(0x30000);
87 
88 		/* Find out if we are running on TP0 or TP1 */
89 		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
90 
91 		/*
92 		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
93 		 * thread
94 		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
95 		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
96 		 */
97 		if (boot_cpu == 0)
98 			cpu_hw_intr = 0x02;
99 		else
100 			cpu_hw_intr = 0x1d;
101 
102 		change_c0_brcm_cmt_intr(0xf8018000,
103 					(cpu_hw_intr << 27) | (0x03 << 15));
104 
105 		/* single core, 2 threads (2 pipelines) */
106 		max_cpus = 2;
107 
108 		break;
109 	case CPU_BMIPS5000:
110 		/* enable raceless SW interrupts */
111 		set_c0_brcm_config(0x03 << 22);
112 
113 		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
114 		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
115 
116 		/* N cores, 2 threads per core */
117 		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
118 
119 		/* clear any pending SW interrupts */
120 		for (i = 0; i < max_cpus; i++) {
121 			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
122 			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
123 		}
124 
125 		break;
126 	default:
127 		max_cpus = 1;
128 	}
129 
130 	if (!bmips_smp_enabled)
131 		max_cpus = 1;
132 
133 	/* this can be overridden by the BSP */
134 	if (!board_ebase_setup)
135 		board_ebase_setup = &bmips_ebase_setup;
136 
137 	__cpu_number_map[boot_cpu] = 0;
138 	__cpu_logical_map[0] = boot_cpu;
139 
140 	for (i = 0; i < max_cpus; i++) {
141 		if (i != boot_cpu) {
142 			__cpu_number_map[i] = cpu;
143 			__cpu_logical_map[cpu] = i;
144 			cpu++;
145 		}
146 		set_cpu_possible(i, 1);
147 		set_cpu_present(i, 1);
148 	}
149 }
150 
151 /*
152  * IPI IRQ setup - runs on CPU0
153  */
154 static void bmips_prepare_cpus(unsigned int max_cpus)
155 {
156 	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
157 
158 	switch (current_cpu_type()) {
159 	case CPU_BMIPS4350:
160 	case CPU_BMIPS4380:
161 		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
162 		break;
163 	case CPU_BMIPS5000:
164 		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
165 		break;
166 	default:
167 		return;
168 	}
169 
170 	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
171 			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
172 		panic("Can't request IPI0 interrupt");
173 	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
174 			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
175 		panic("Can't request IPI1 interrupt");
176 }
177 
178 /*
179  * Tell the hardware to boot CPUx - runs on CPU0
180  */
181 static int bmips_boot_secondary(int cpu, struct task_struct *idle)
182 {
183 	bmips_smp_boot_sp = __KSTK_TOS(idle);
184 	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
185 	mb();
186 
187 	/*
188 	 * Initial boot sequence for secondary CPU:
189 	 *   bmips_reset_nmi_vec @ a000_0000 ->
190 	 *   bmips_smp_entry ->
191 	 *   plat_wired_tlb_setup (cached function call; optional) ->
192 	 *   start_secondary (cached jump)
193 	 *
194 	 * Warm restart sequence:
195 	 *   play_dead WAIT loop ->
196 	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
197 	 *   eret to play_dead ->
198 	 *   bmips_secondary_reentry ->
199 	 *   start_secondary
200 	 */
201 
202 	pr_info("SMP: Booting CPU%d...\n", cpu);
203 
204 	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
205 		/* kseg1 might not exist if this CPU enabled XKS01 */
206 		bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
207 
208 		switch (current_cpu_type()) {
209 		case CPU_BMIPS4350:
210 		case CPU_BMIPS4380:
211 			bmips43xx_send_ipi_single(cpu, 0);
212 			break;
213 		case CPU_BMIPS5000:
214 			bmips5000_send_ipi_single(cpu, 0);
215 			break;
216 		}
217 	} else {
218 		bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
219 
220 		switch (current_cpu_type()) {
221 		case CPU_BMIPS4350:
222 		case CPU_BMIPS4380:
223 			/* Reset slave TP1 if booting from TP0 */
224 			if (cpu_logical_map(cpu) == 1)
225 				set_c0_brcm_cmt_ctrl(0x01);
226 			break;
227 		case CPU_BMIPS5000:
228 			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
229 			break;
230 		}
231 		cpumask_set_cpu(cpu, &bmips_booted_mask);
232 	}
233 
234 	return 0;
235 }
236 
237 /*
238  * Early setup - runs on secondary CPU after cache probe
239  */
240 static void bmips_init_secondary(void)
241 {
242 	bmips_cpu_setup();
243 
244 	switch (current_cpu_type()) {
245 	case CPU_BMIPS4350:
246 	case CPU_BMIPS4380:
247 		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
248 		break;
249 	case CPU_BMIPS5000:
250 		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
251 		cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
252 		break;
253 	}
254 }
255 
256 /*
257  * Late setup - runs on secondary CPU before entering the idle loop
258  */
259 static void bmips_smp_finish(void)
260 {
261 	pr_info("SMP: CPU%d is running\n", smp_processor_id());
262 
263 	/* make sure there won't be a timer interrupt for a little while */
264 	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
265 
266 	irq_enable_hazard();
267 	set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
268 	irq_enable_hazard();
269 }
270 
271 /*
272  * BMIPS5000 raceless IPIs
273  *
274  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
275  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
276  * IPI1 is used for SMP_CALL_FUNCTION
277  */
278 
279 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
280 {
281 	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
282 }
283 
284 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
285 {
286 	int action = irq - IPI0_IRQ;
287 
288 	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
289 
290 	if (action == 0)
291 		scheduler_ipi();
292 	else
293 		generic_smp_call_function_interrupt();
294 
295 	return IRQ_HANDLED;
296 }
297 
298 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
299 	unsigned int action)
300 {
301 	unsigned int i;
302 
303 	for_each_cpu(i, mask)
304 		bmips5000_send_ipi_single(i, action);
305 }
306 
307 /*
308  * BMIPS43xx racey IPIs
309  *
310  * We use one inbound SW IRQ for each CPU.
311  *
312  * A spinlock must be held in order to keep CPUx from accidentally clearing
313  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
314  * same spinlock is used to protect the action masks.
315  */
316 
317 static DEFINE_SPINLOCK(ipi_lock);
318 static DEFINE_PER_CPU(int, ipi_action_mask);
319 
320 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
321 {
322 	unsigned long flags;
323 
324 	spin_lock_irqsave(&ipi_lock, flags);
325 	set_c0_cause(cpu ? C_SW1 : C_SW0);
326 	per_cpu(ipi_action_mask, cpu) |= action;
327 	irq_enable_hazard();
328 	spin_unlock_irqrestore(&ipi_lock, flags);
329 }
330 
331 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
332 {
333 	unsigned long flags;
334 	int action, cpu = irq - IPI0_IRQ;
335 
336 	spin_lock_irqsave(&ipi_lock, flags);
337 	action = __this_cpu_read(ipi_action_mask);
338 	per_cpu(ipi_action_mask, cpu) = 0;
339 	clear_c0_cause(cpu ? C_SW1 : C_SW0);
340 	spin_unlock_irqrestore(&ipi_lock, flags);
341 
342 	if (action & SMP_RESCHEDULE_YOURSELF)
343 		scheduler_ipi();
344 	if (action & SMP_CALL_FUNCTION)
345 		generic_smp_call_function_interrupt();
346 
347 	return IRQ_HANDLED;
348 }
349 
350 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
351 	unsigned int action)
352 {
353 	unsigned int i;
354 
355 	for_each_cpu(i, mask)
356 		bmips43xx_send_ipi_single(i, action);
357 }
358 
359 #ifdef CONFIG_HOTPLUG_CPU
360 
361 static int bmips_cpu_disable(void)
362 {
363 	unsigned int cpu = smp_processor_id();
364 
365 	pr_info("SMP: CPU%d is offline\n", cpu);
366 
367 	set_cpu_online(cpu, false);
368 	calculate_cpu_foreign_map();
369 	irq_cpu_offline();
370 	clear_c0_status(IE_IRQ5);
371 
372 	local_flush_tlb_all();
373 	local_flush_icache_range(0, ~0);
374 
375 	return 0;
376 }
377 
378 static void bmips_cpu_die(unsigned int cpu)
379 {
380 }
381 
382 void __ref play_dead(void)
383 {
384 	idle_task_exit();
385 
386 	/* flush data cache */
387 	_dma_cache_wback_inv(0, ~0);
388 
389 	/*
390 	 * Wakeup is on SW0 or SW1; disable everything else
391 	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
392 	 * IRQ handlers; this clears ST0_IE and returns immediately.
393 	 */
394 	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
395 	change_c0_status(
396 		IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
397 		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
398 	irq_disable_hazard();
399 
400 	/*
401 	 * wait for SW interrupt from bmips_boot_secondary(), then jump
402 	 * back to start_secondary()
403 	 */
404 	__asm__ __volatile__(
405 	"	wait\n"
406 	"	j	bmips_secondary_reentry\n"
407 	: : : "memory");
408 }
409 
410 #endif /* CONFIG_HOTPLUG_CPU */
411 
412 const struct plat_smp_ops bmips43xx_smp_ops = {
413 	.smp_setup		= bmips_smp_setup,
414 	.prepare_cpus		= bmips_prepare_cpus,
415 	.boot_secondary		= bmips_boot_secondary,
416 	.smp_finish		= bmips_smp_finish,
417 	.init_secondary		= bmips_init_secondary,
418 	.send_ipi_single	= bmips43xx_send_ipi_single,
419 	.send_ipi_mask		= bmips43xx_send_ipi_mask,
420 #ifdef CONFIG_HOTPLUG_CPU
421 	.cpu_disable		= bmips_cpu_disable,
422 	.cpu_die		= bmips_cpu_die,
423 #endif
424 #ifdef CONFIG_KEXEC
425 	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
426 #endif
427 };
428 
429 const struct plat_smp_ops bmips5000_smp_ops = {
430 	.smp_setup		= bmips_smp_setup,
431 	.prepare_cpus		= bmips_prepare_cpus,
432 	.boot_secondary		= bmips_boot_secondary,
433 	.smp_finish		= bmips_smp_finish,
434 	.init_secondary		= bmips_init_secondary,
435 	.send_ipi_single	= bmips5000_send_ipi_single,
436 	.send_ipi_mask		= bmips5000_send_ipi_mask,
437 #ifdef CONFIG_HOTPLUG_CPU
438 	.cpu_disable		= bmips_cpu_disable,
439 	.cpu_die		= bmips_cpu_die,
440 #endif
441 #ifdef CONFIG_KEXEC
442 	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
443 #endif
444 };
445 
446 #endif /* CONFIG_SMP */
447 
448 /***********************************************************************
449  * BMIPS vector relocation
450  * This is primarily used for SMP boot, but it is applicable to some
451  * UP BMIPS systems as well.
452  ***********************************************************************/
453 
454 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
455 {
456 	memcpy((void *)dst, start, end - start);
457 	dma_cache_wback(dst, end - start);
458 	local_flush_icache_range(dst, dst + (end - start));
459 	instruction_hazard();
460 }
461 
462 static inline void bmips_nmi_handler_setup(void)
463 {
464 	bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
465 		bmips_reset_nmi_vec_end);
466 	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
467 		bmips_smp_int_vec_end);
468 }
469 
470 struct reset_vec_info {
471 	int cpu;
472 	u32 val;
473 };
474 
475 static void bmips_set_reset_vec_remote(void *vinfo)
476 {
477 	struct reset_vec_info *info = vinfo;
478 	int shift = info->cpu & 0x01 ? 16 : 0;
479 	u32 mask = ~(0xffff << shift), val = info->val >> 16;
480 
481 	preempt_disable();
482 	if (smp_processor_id() > 0) {
483 		smp_call_function_single(0, &bmips_set_reset_vec_remote,
484 					 info, 1);
485 	} else {
486 		if (info->cpu & 0x02) {
487 			/* BMIPS5200 "should" use mask/shift, but it's buggy */
488 			bmips_write_zscm_reg(0xa0, (val << 16) | val);
489 			bmips_read_zscm_reg(0xa0);
490 		} else {
491 			write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
492 					      (val << shift));
493 		}
494 	}
495 	preempt_enable();
496 }
497 
498 static void bmips_set_reset_vec(int cpu, u32 val)
499 {
500 	struct reset_vec_info info;
501 
502 	if (current_cpu_type() == CPU_BMIPS5000) {
503 		/* this needs to run from CPU0 (which is always online) */
504 		info.cpu = cpu;
505 		info.val = val;
506 		bmips_set_reset_vec_remote(&info);
507 	} else {
508 		void __iomem *cbr = BMIPS_GET_CBR();
509 
510 		if (cpu == 0)
511 			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
512 		else {
513 			if (current_cpu_type() != CPU_BMIPS4380)
514 				return;
515 			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
516 		}
517 	}
518 	__sync();
519 	back_to_back_c0_hazard();
520 }
521 
522 void bmips_ebase_setup(void)
523 {
524 	unsigned long new_ebase = ebase;
525 
526 	BUG_ON(ebase != CKSEG0);
527 
528 	switch (current_cpu_type()) {
529 	case CPU_BMIPS4350:
530 		/*
531 		 * BMIPS4350 cannot relocate the normal vectors, but it
532 		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
533 		 * the relocated BEV=1, IV=0 general exception vector @
534 		 * 0xa000_0380.
535 		 *
536 		 * set_uncached_handler() is used here because:
537 		 *  - CPU1 will run this from uncached space
538 		 *  - None of the cacheflush functions are set up yet
539 		 */
540 		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
541 			&bmips_smp_int_vec, 0x80);
542 		__sync();
543 		return;
544 	case CPU_BMIPS3300:
545 	case CPU_BMIPS4380:
546 		/*
547 		 * 0x8000_0000: reset/NMI (initially in kseg1)
548 		 * 0x8000_0400: normal vectors
549 		 */
550 		new_ebase = 0x80000400;
551 		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
552 		break;
553 	case CPU_BMIPS5000:
554 		/*
555 		 * 0x8000_0000: reset/NMI (initially in kseg1)
556 		 * 0x8000_1000: normal vectors
557 		 */
558 		new_ebase = 0x80001000;
559 		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
560 		write_c0_ebase(new_ebase);
561 		break;
562 	default:
563 		return;
564 	}
565 
566 	board_nmi_handler_setup = &bmips_nmi_handler_setup;
567 	ebase = new_ebase;
568 }
569 
570 asmlinkage void __weak plat_wired_tlb_setup(void)
571 {
572 	/*
573 	 * Called when starting/restarting a secondary CPU.
574 	 * Kernel stacks and other important data might only be accessible
575 	 * once the wired entries are present.
576 	 */
577 }
578 
579 void bmips_cpu_setup(void)
580 {
581 	void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
582 	u32 __maybe_unused cfg;
583 
584 	switch (current_cpu_type()) {
585 	case CPU_BMIPS3300:
586 		/* Set BIU to async mode */
587 		set_c0_brcm_bus_pll(BIT(22));
588 		__sync();
589 
590 		/* put the BIU back in sync mode */
591 		clear_c0_brcm_bus_pll(BIT(22));
592 
593 		/* clear BHTD to enable branch history table */
594 		clear_c0_brcm_reset(BIT(16));
595 
596 		/* Flush and enable RAC */
597 		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
598 		__raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
599 		__raw_readl(cbr + BMIPS_RAC_CONFIG);
600 
601 		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
602 		__raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
603 		__raw_readl(cbr + BMIPS_RAC_CONFIG);
604 
605 		cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
606 		__raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
607 		__raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
608 		break;
609 
610 	case CPU_BMIPS4380:
611 		/* CBG workaround for early BMIPS4380 CPUs */
612 		switch (read_c0_prid()) {
613 		case 0x2a040:
614 		case 0x2a042:
615 		case 0x2a044:
616 		case 0x2a060:
617 			cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
618 			__raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
619 			__raw_readl(cbr + BMIPS_L2_CONFIG);
620 		}
621 
622 		/* clear BHTD to enable branch history table */
623 		clear_c0_brcm_config_0(BIT(21));
624 
625 		/* XI/ROTR enable */
626 		set_c0_brcm_config_0(BIT(23));
627 		set_c0_brcm_cmt_ctrl(BIT(15));
628 		break;
629 
630 	case CPU_BMIPS5000:
631 		/* enable RDHWR, BRDHWR */
632 		set_c0_brcm_config(BIT(17) | BIT(21));
633 
634 		/* Disable JTB */
635 		__asm__ __volatile__(
636 		"	.set	noreorder\n"
637 		"	li	$8, 0x5a455048\n"
638 		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
639 		"	.word	0x4008b008\n"	/* mfc0	t0, $22, 8 */
640 		"	li	$9, 0x00008000\n"
641 		"	or	$8, $8, $9\n"
642 		"	.word	0x4088b008\n"	/* mtc0	t0, $22, 8 */
643 		"	sync\n"
644 		"	li	$8, 0x0\n"
645 		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
646 		"	.set	reorder\n"
647 		: : : "$8", "$9");
648 
649 		/* XI enable */
650 		set_c0_brcm_config(BIT(27));
651 
652 		/* enable MIPS32R2 ROR instruction for XI TLB handlers */
653 		__asm__ __volatile__(
654 		"	li	$8, 0x5a455048\n"
655 		"	.word	0x4088b00f\n"	/* mtc0 $8, $22, 15 */
656 		"	nop; nop; nop\n"
657 		"	.word	0x4008b008\n"	/* mfc0 $8, $22, 8 */
658 		"	lui	$9, 0x0100\n"
659 		"	or	$8, $9\n"
660 		"	.word	0x4088b008\n"	/* mtc0 $8, $22, 8 */
661 		: : : "$8", "$9");
662 		break;
663 	}
664 }
665