1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com) 7 * 8 * SMP support for BMIPS 9 */ 10 11 #include <linux/init.h> 12 #include <linux/sched.h> 13 #include <linux/mm.h> 14 #include <linux/delay.h> 15 #include <linux/smp.h> 16 #include <linux/interrupt.h> 17 #include <linux/spinlock.h> 18 #include <linux/cpu.h> 19 #include <linux/cpumask.h> 20 #include <linux/reboot.h> 21 #include <linux/io.h> 22 #include <linux/compiler.h> 23 #include <linux/linkage.h> 24 #include <linux/bug.h> 25 #include <linux/kernel.h> 26 27 #include <asm/time.h> 28 #include <asm/pgtable.h> 29 #include <asm/processor.h> 30 #include <asm/bootinfo.h> 31 #include <asm/pmon.h> 32 #include <asm/cacheflush.h> 33 #include <asm/tlbflush.h> 34 #include <asm/mipsregs.h> 35 #include <asm/bmips.h> 36 #include <asm/traps.h> 37 #include <asm/barrier.h> 38 39 static int __maybe_unused max_cpus = 1; 40 41 /* these may be configured by the platform code */ 42 int bmips_smp_enabled = 1; 43 int bmips_cpu_offset; 44 cpumask_t bmips_booted_mask; 45 46 #ifdef CONFIG_SMP 47 48 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */ 49 unsigned long bmips_smp_boot_sp; 50 unsigned long bmips_smp_boot_gp; 51 52 static void bmips43xx_send_ipi_single(int cpu, unsigned int action); 53 static void bmips5000_send_ipi_single(int cpu, unsigned int action); 54 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id); 55 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id); 56 57 /* SW interrupts 0,1 are used for interprocessor signaling */ 58 #define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0) 59 #define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1) 60 61 #define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift)) 62 #define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8)) 63 #define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8)) 64 #define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0)) 65 66 static void __init bmips_smp_setup(void) 67 { 68 int i, cpu = 1, boot_cpu = 0; 69 int cpu_hw_intr; 70 71 switch (current_cpu_type()) { 72 case CPU_BMIPS4350: 73 case CPU_BMIPS4380: 74 /* arbitration priority */ 75 clear_c0_brcm_cmt_ctrl(0x30); 76 77 /* NBK and weak order flags */ 78 set_c0_brcm_config_0(0x30000); 79 80 /* Find out if we are running on TP0 or TP1 */ 81 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31)); 82 83 /* 84 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other 85 * thread 86 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output 87 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output 88 */ 89 if (boot_cpu == 0) 90 cpu_hw_intr = 0x02; 91 else 92 cpu_hw_intr = 0x1d; 93 94 change_c0_brcm_cmt_intr(0xf8018000, 95 (cpu_hw_intr << 27) | (0x03 << 15)); 96 97 /* single core, 2 threads (2 pipelines) */ 98 max_cpus = 2; 99 100 break; 101 case CPU_BMIPS5000: 102 /* enable raceless SW interrupts */ 103 set_c0_brcm_config(0x03 << 22); 104 105 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */ 106 change_c0_brcm_mode(0x1f << 27, 0x02 << 27); 107 108 /* N cores, 2 threads per core */ 109 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1; 110 111 /* clear any pending SW interrupts */ 112 for (i = 0; i < max_cpus; i++) { 113 write_c0_brcm_action(ACTION_CLR_IPI(i, 0)); 114 write_c0_brcm_action(ACTION_CLR_IPI(i, 1)); 115 } 116 117 break; 118 default: 119 max_cpus = 1; 120 } 121 122 if (!bmips_smp_enabled) 123 max_cpus = 1; 124 125 /* this can be overridden by the BSP */ 126 if (!board_ebase_setup) 127 board_ebase_setup = &bmips_ebase_setup; 128 129 __cpu_number_map[boot_cpu] = 0; 130 __cpu_logical_map[0] = boot_cpu; 131 132 for (i = 0; i < max_cpus; i++) { 133 if (i != boot_cpu) { 134 __cpu_number_map[i] = cpu; 135 __cpu_logical_map[cpu] = i; 136 cpu++; 137 } 138 set_cpu_possible(i, 1); 139 set_cpu_present(i, 1); 140 } 141 } 142 143 /* 144 * IPI IRQ setup - runs on CPU0 145 */ 146 static void bmips_prepare_cpus(unsigned int max_cpus) 147 { 148 irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id); 149 150 switch (current_cpu_type()) { 151 case CPU_BMIPS4350: 152 case CPU_BMIPS4380: 153 bmips_ipi_interrupt = bmips43xx_ipi_interrupt; 154 break; 155 case CPU_BMIPS5000: 156 bmips_ipi_interrupt = bmips5000_ipi_interrupt; 157 break; 158 default: 159 return; 160 } 161 162 if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU, 163 "smp_ipi0", NULL)) 164 panic("Can't request IPI0 interrupt"); 165 if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU, 166 "smp_ipi1", NULL)) 167 panic("Can't request IPI1 interrupt"); 168 } 169 170 /* 171 * Tell the hardware to boot CPUx - runs on CPU0 172 */ 173 static void bmips_boot_secondary(int cpu, struct task_struct *idle) 174 { 175 bmips_smp_boot_sp = __KSTK_TOS(idle); 176 bmips_smp_boot_gp = (unsigned long)task_thread_info(idle); 177 mb(); 178 179 /* 180 * Initial boot sequence for secondary CPU: 181 * bmips_reset_nmi_vec @ a000_0000 -> 182 * bmips_smp_entry -> 183 * plat_wired_tlb_setup (cached function call; optional) -> 184 * start_secondary (cached jump) 185 * 186 * Warm restart sequence: 187 * play_dead WAIT loop -> 188 * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC -> 189 * eret to play_dead -> 190 * bmips_secondary_reentry -> 191 * start_secondary 192 */ 193 194 pr_info("SMP: Booting CPU%d...\n", cpu); 195 196 if (cpumask_test_cpu(cpu, &bmips_booted_mask)) { 197 switch (current_cpu_type()) { 198 case CPU_BMIPS4350: 199 case CPU_BMIPS4380: 200 bmips43xx_send_ipi_single(cpu, 0); 201 break; 202 case CPU_BMIPS5000: 203 bmips5000_send_ipi_single(cpu, 0); 204 break; 205 } 206 } 207 else { 208 switch (current_cpu_type()) { 209 case CPU_BMIPS4350: 210 case CPU_BMIPS4380: 211 /* Reset slave TP1 if booting from TP0 */ 212 if (cpu_logical_map(cpu) == 1) 213 set_c0_brcm_cmt_ctrl(0x01); 214 break; 215 case CPU_BMIPS5000: 216 if (cpu & 0x01) 217 write_c0_brcm_action(ACTION_BOOT_THREAD(cpu)); 218 else { 219 /* 220 * core N thread 0 was already booted; just 221 * pulse the NMI line 222 */ 223 bmips_write_zscm_reg(0x210, 0xc0000000); 224 udelay(10); 225 bmips_write_zscm_reg(0x210, 0x00); 226 } 227 break; 228 } 229 cpumask_set_cpu(cpu, &bmips_booted_mask); 230 } 231 } 232 233 /* 234 * Early setup - runs on secondary CPU after cache probe 235 */ 236 static void bmips_init_secondary(void) 237 { 238 /* move NMI vector to kseg0, in case XKS01 is enabled */ 239 240 void __iomem *cbr; 241 unsigned long old_vec; 242 unsigned long relo_vector; 243 int boot_cpu; 244 245 switch (current_cpu_type()) { 246 case CPU_BMIPS4350: 247 case CPU_BMIPS4380: 248 cbr = BMIPS_GET_CBR(); 249 250 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31)); 251 relo_vector = boot_cpu ? BMIPS_RELO_VECTOR_CONTROL_0 : 252 BMIPS_RELO_VECTOR_CONTROL_1; 253 254 old_vec = __raw_readl(cbr + relo_vector); 255 __raw_writel(old_vec & ~0x20000000, cbr + relo_vector); 256 257 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0); 258 break; 259 case CPU_BMIPS5000: 260 write_c0_brcm_bootvec(read_c0_brcm_bootvec() & 261 (smp_processor_id() & 0x01 ? ~0x20000000 : ~0x2000)); 262 263 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0)); 264 break; 265 } 266 } 267 268 /* 269 * Late setup - runs on secondary CPU before entering the idle loop 270 */ 271 static void bmips_smp_finish(void) 272 { 273 pr_info("SMP: CPU%d is running\n", smp_processor_id()); 274 275 /* make sure there won't be a timer interrupt for a little while */ 276 write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ); 277 278 irq_enable_hazard(); 279 set_c0_status(IE_SW0 | IE_SW1 | IE_IRQ1 | IE_IRQ5 | ST0_IE); 280 irq_enable_hazard(); 281 } 282 283 /* 284 * Runs on CPU0 after all CPUs have been booted 285 */ 286 static void bmips_cpus_done(void) 287 { 288 } 289 290 /* 291 * BMIPS5000 raceless IPIs 292 * 293 * Each CPU has two inbound SW IRQs which are independent of all other CPUs. 294 * IPI0 is used for SMP_RESCHEDULE_YOURSELF 295 * IPI1 is used for SMP_CALL_FUNCTION 296 */ 297 298 static void bmips5000_send_ipi_single(int cpu, unsigned int action) 299 { 300 write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION)); 301 } 302 303 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id) 304 { 305 int action = irq - IPI0_IRQ; 306 307 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action)); 308 309 if (action == 0) 310 scheduler_ipi(); 311 else 312 smp_call_function_interrupt(); 313 314 return IRQ_HANDLED; 315 } 316 317 static void bmips5000_send_ipi_mask(const struct cpumask *mask, 318 unsigned int action) 319 { 320 unsigned int i; 321 322 for_each_cpu(i, mask) 323 bmips5000_send_ipi_single(i, action); 324 } 325 326 /* 327 * BMIPS43xx racey IPIs 328 * 329 * We use one inbound SW IRQ for each CPU. 330 * 331 * A spinlock must be held in order to keep CPUx from accidentally clearing 332 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The 333 * same spinlock is used to protect the action masks. 334 */ 335 336 static DEFINE_SPINLOCK(ipi_lock); 337 static DEFINE_PER_CPU(int, ipi_action_mask); 338 339 static void bmips43xx_send_ipi_single(int cpu, unsigned int action) 340 { 341 unsigned long flags; 342 343 spin_lock_irqsave(&ipi_lock, flags); 344 set_c0_cause(cpu ? C_SW1 : C_SW0); 345 per_cpu(ipi_action_mask, cpu) |= action; 346 irq_enable_hazard(); 347 spin_unlock_irqrestore(&ipi_lock, flags); 348 } 349 350 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id) 351 { 352 unsigned long flags; 353 int action, cpu = irq - IPI0_IRQ; 354 355 spin_lock_irqsave(&ipi_lock, flags); 356 action = __get_cpu_var(ipi_action_mask); 357 per_cpu(ipi_action_mask, cpu) = 0; 358 clear_c0_cause(cpu ? C_SW1 : C_SW0); 359 spin_unlock_irqrestore(&ipi_lock, flags); 360 361 if (action & SMP_RESCHEDULE_YOURSELF) 362 scheduler_ipi(); 363 if (action & SMP_CALL_FUNCTION) 364 smp_call_function_interrupt(); 365 366 return IRQ_HANDLED; 367 } 368 369 static void bmips43xx_send_ipi_mask(const struct cpumask *mask, 370 unsigned int action) 371 { 372 unsigned int i; 373 374 for_each_cpu(i, mask) 375 bmips43xx_send_ipi_single(i, action); 376 } 377 378 #ifdef CONFIG_HOTPLUG_CPU 379 380 static int bmips_cpu_disable(void) 381 { 382 unsigned int cpu = smp_processor_id(); 383 384 if (cpu == 0) 385 return -EBUSY; 386 387 pr_info("SMP: CPU%d is offline\n", cpu); 388 389 set_cpu_online(cpu, false); 390 cpu_clear(cpu, cpu_callin_map); 391 392 local_flush_tlb_all(); 393 local_flush_icache_range(0, ~0); 394 395 return 0; 396 } 397 398 static void bmips_cpu_die(unsigned int cpu) 399 { 400 } 401 402 void __ref play_dead(void) 403 { 404 idle_task_exit(); 405 406 /* flush data cache */ 407 _dma_cache_wback_inv(0, ~0); 408 409 /* 410 * Wakeup is on SW0 or SW1; disable everything else 411 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux 412 * IRQ handlers; this clears ST0_IE and returns immediately. 413 */ 414 clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1); 415 change_c0_status(IE_IRQ5 | IE_IRQ1 | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV, 416 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV); 417 irq_disable_hazard(); 418 419 /* 420 * wait for SW interrupt from bmips_boot_secondary(), then jump 421 * back to start_secondary() 422 */ 423 __asm__ __volatile__( 424 " wait\n" 425 " j bmips_secondary_reentry\n" 426 : : : "memory"); 427 } 428 429 #endif /* CONFIG_HOTPLUG_CPU */ 430 431 struct plat_smp_ops bmips43xx_smp_ops = { 432 .smp_setup = bmips_smp_setup, 433 .prepare_cpus = bmips_prepare_cpus, 434 .boot_secondary = bmips_boot_secondary, 435 .smp_finish = bmips_smp_finish, 436 .init_secondary = bmips_init_secondary, 437 .cpus_done = bmips_cpus_done, 438 .send_ipi_single = bmips43xx_send_ipi_single, 439 .send_ipi_mask = bmips43xx_send_ipi_mask, 440 #ifdef CONFIG_HOTPLUG_CPU 441 .cpu_disable = bmips_cpu_disable, 442 .cpu_die = bmips_cpu_die, 443 #endif 444 }; 445 446 struct plat_smp_ops bmips5000_smp_ops = { 447 .smp_setup = bmips_smp_setup, 448 .prepare_cpus = bmips_prepare_cpus, 449 .boot_secondary = bmips_boot_secondary, 450 .smp_finish = bmips_smp_finish, 451 .init_secondary = bmips_init_secondary, 452 .cpus_done = bmips_cpus_done, 453 .send_ipi_single = bmips5000_send_ipi_single, 454 .send_ipi_mask = bmips5000_send_ipi_mask, 455 #ifdef CONFIG_HOTPLUG_CPU 456 .cpu_disable = bmips_cpu_disable, 457 .cpu_die = bmips_cpu_die, 458 #endif 459 }; 460 461 #endif /* CONFIG_SMP */ 462 463 /*********************************************************************** 464 * BMIPS vector relocation 465 * This is primarily used for SMP boot, but it is applicable to some 466 * UP BMIPS systems as well. 467 ***********************************************************************/ 468 469 static void bmips_wr_vec(unsigned long dst, char *start, char *end) 470 { 471 memcpy((void *)dst, start, end - start); 472 dma_cache_wback((unsigned long)start, end - start); 473 local_flush_icache_range(dst, dst + (end - start)); 474 instruction_hazard(); 475 } 476 477 static inline void bmips_nmi_handler_setup(void) 478 { 479 bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec, 480 &bmips_reset_nmi_vec_end); 481 bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec, 482 &bmips_smp_int_vec_end); 483 } 484 485 void bmips_ebase_setup(void) 486 { 487 unsigned long new_ebase = ebase; 488 void __iomem __maybe_unused *cbr; 489 490 BUG_ON(ebase != CKSEG0); 491 492 switch (current_cpu_type()) { 493 case CPU_BMIPS4350: 494 /* 495 * BMIPS4350 cannot relocate the normal vectors, but it 496 * can relocate the BEV=1 vectors. So CPU1 starts up at 497 * the relocated BEV=1, IV=0 general exception vector @ 498 * 0xa000_0380. 499 * 500 * set_uncached_handler() is used here because: 501 * - CPU1 will run this from uncached space 502 * - None of the cacheflush functions are set up yet 503 */ 504 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0, 505 &bmips_smp_int_vec, 0x80); 506 __sync(); 507 return; 508 case CPU_BMIPS4380: 509 /* 510 * 0x8000_0000: reset/NMI (initially in kseg1) 511 * 0x8000_0400: normal vectors 512 */ 513 new_ebase = 0x80000400; 514 cbr = BMIPS_GET_CBR(); 515 __raw_writel(0x80080800, cbr + BMIPS_RELO_VECTOR_CONTROL_0); 516 __raw_writel(0xa0080800, cbr + BMIPS_RELO_VECTOR_CONTROL_1); 517 break; 518 case CPU_BMIPS5000: 519 /* 520 * 0x8000_0000: reset/NMI (initially in kseg1) 521 * 0x8000_1000: normal vectors 522 */ 523 new_ebase = 0x80001000; 524 write_c0_brcm_bootvec(0xa0088008); 525 write_c0_ebase(new_ebase); 526 if (max_cpus > 2) 527 bmips_write_zscm_reg(0xa0, 0xa008a008); 528 break; 529 default: 530 return; 531 } 532 533 board_nmi_handler_setup = &bmips_nmi_handler_setup; 534 ebase = new_ebase; 535 } 536 537 asmlinkage void __weak plat_wired_tlb_setup(void) 538 { 539 /* 540 * Called when starting/restarting a secondary CPU. 541 * Kernel stacks and other important data might only be accessible 542 * once the wired entries are present. 543 */ 544 } 545