xref: /openbmc/linux/arch/mips/kernel/smp-bmips.c (revision 8fdff1dc)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10 
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/mm.h>
14 #include <linux/delay.h>
15 #include <linux/smp.h>
16 #include <linux/interrupt.h>
17 #include <linux/spinlock.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/reboot.h>
21 #include <linux/io.h>
22 #include <linux/compiler.h>
23 #include <linux/linkage.h>
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 
27 #include <asm/time.h>
28 #include <asm/pgtable.h>
29 #include <asm/processor.h>
30 #include <asm/bootinfo.h>
31 #include <asm/pmon.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mipsregs.h>
35 #include <asm/bmips.h>
36 #include <asm/traps.h>
37 #include <asm/barrier.h>
38 
39 static int __maybe_unused max_cpus = 1;
40 
41 /* these may be configured by the platform code */
42 int bmips_smp_enabled = 1;
43 int bmips_cpu_offset;
44 cpumask_t bmips_booted_mask;
45 
46 #ifdef CONFIG_SMP
47 
48 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
49 unsigned long bmips_smp_boot_sp;
50 unsigned long bmips_smp_boot_gp;
51 
52 static void bmips_send_ipi_single(int cpu, unsigned int action);
53 static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id);
54 
55 /* SW interrupts 0,1 are used for interprocessor signaling */
56 #define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
57 #define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
58 
59 #define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
60 #define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
61 #define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
62 #define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
63 
64 static void __init bmips_smp_setup(void)
65 {
66 	int i;
67 
68 #if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
69 	/* arbitration priority */
70 	clear_c0_brcm_cmt_ctrl(0x30);
71 
72 	/* NBK and weak order flags */
73 	set_c0_brcm_config_0(0x30000);
74 
75 	/*
76 	 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other thread
77 	 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
78 	 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
79 	 */
80 	change_c0_brcm_cmt_intr(0xf8018000,
81 		(0x02 << 27) | (0x03 << 15));
82 
83 	/* single core, 2 threads (2 pipelines) */
84 	max_cpus = 2;
85 #elif defined(CONFIG_CPU_BMIPS5000)
86 	/* enable raceless SW interrupts */
87 	set_c0_brcm_config(0x03 << 22);
88 
89 	/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
90 	change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
91 
92 	/* N cores, 2 threads per core */
93 	max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
94 
95 	/* clear any pending SW interrupts */
96 	for (i = 0; i < max_cpus; i++) {
97 		write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
98 		write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
99 	}
100 #endif
101 
102 	if (!bmips_smp_enabled)
103 		max_cpus = 1;
104 
105 	/* this can be overridden by the BSP */
106 	if (!board_ebase_setup)
107 		board_ebase_setup = &bmips_ebase_setup;
108 
109 	for (i = 0; i < max_cpus; i++) {
110 		__cpu_number_map[i] = 1;
111 		__cpu_logical_map[i] = 1;
112 		set_cpu_possible(i, 1);
113 		set_cpu_present(i, 1);
114 	}
115 }
116 
117 /*
118  * IPI IRQ setup - runs on CPU0
119  */
120 static void bmips_prepare_cpus(unsigned int max_cpus)
121 {
122 	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
123 			"smp_ipi0", NULL))
124 		panic("Can't request IPI0 interrupt\n");
125 	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
126 			"smp_ipi1", NULL))
127 		panic("Can't request IPI1 interrupt\n");
128 }
129 
130 /*
131  * Tell the hardware to boot CPUx - runs on CPU0
132  */
133 static void bmips_boot_secondary(int cpu, struct task_struct *idle)
134 {
135 	bmips_smp_boot_sp = __KSTK_TOS(idle);
136 	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
137 	mb();
138 
139 	/*
140 	 * Initial boot sequence for secondary CPU:
141 	 *   bmips_reset_nmi_vec @ a000_0000 ->
142 	 *   bmips_smp_entry ->
143 	 *   plat_wired_tlb_setup (cached function call; optional) ->
144 	 *   start_secondary (cached jump)
145 	 *
146 	 * Warm restart sequence:
147 	 *   play_dead WAIT loop ->
148 	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
149 	 *   eret to play_dead ->
150 	 *   bmips_secondary_reentry ->
151 	 *   start_secondary
152 	 */
153 
154 	pr_info("SMP: Booting CPU%d...\n", cpu);
155 
156 	if (cpumask_test_cpu(cpu, &bmips_booted_mask))
157 		bmips_send_ipi_single(cpu, 0);
158 	else {
159 #if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
160 		set_c0_brcm_cmt_ctrl(0x01);
161 #elif defined(CONFIG_CPU_BMIPS5000)
162 		if (cpu & 0x01)
163 			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
164 		else {
165 			/*
166 			 * core N thread 0 was already booted; just
167 			 * pulse the NMI line
168 			 */
169 			bmips_write_zscm_reg(0x210, 0xc0000000);
170 			udelay(10);
171 			bmips_write_zscm_reg(0x210, 0x00);
172 		}
173 #endif
174 		cpumask_set_cpu(cpu, &bmips_booted_mask);
175 	}
176 }
177 
178 /*
179  * Early setup - runs on secondary CPU after cache probe
180  */
181 static void bmips_init_secondary(void)
182 {
183 	/* move NMI vector to kseg0, in case XKS01 is enabled */
184 
185 #if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
186 	void __iomem *cbr = BMIPS_GET_CBR();
187 	unsigned long old_vec;
188 
189 	old_vec = __raw_readl(cbr + BMIPS_RELO_VECTOR_CONTROL_1);
190 	__raw_writel(old_vec & ~0x20000000, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
191 
192 	clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
193 #elif defined(CONFIG_CPU_BMIPS5000)
194 	write_c0_brcm_bootvec(read_c0_brcm_bootvec() &
195 		(smp_processor_id() & 0x01 ? ~0x20000000 : ~0x2000));
196 
197 	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
198 #endif
199 }
200 
201 /*
202  * Late setup - runs on secondary CPU before entering the idle loop
203  */
204 static void bmips_smp_finish(void)
205 {
206 	pr_info("SMP: CPU%d is running\n", smp_processor_id());
207 
208 	/* make sure there won't be a timer interrupt for a little while */
209 	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
210 
211 	irq_enable_hazard();
212 	set_c0_status(IE_SW0 | IE_SW1 | IE_IRQ1 | IE_IRQ5 | ST0_IE);
213 	irq_enable_hazard();
214 }
215 
216 /*
217  * Runs on CPU0 after all CPUs have been booted
218  */
219 static void bmips_cpus_done(void)
220 {
221 }
222 
223 #if defined(CONFIG_CPU_BMIPS5000)
224 
225 /*
226  * BMIPS5000 raceless IPIs
227  *
228  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
229  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
230  * IPI1 is used for SMP_CALL_FUNCTION
231  */
232 
233 static void bmips_send_ipi_single(int cpu, unsigned int action)
234 {
235 	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
236 }
237 
238 static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id)
239 {
240 	int action = irq - IPI0_IRQ;
241 
242 	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
243 
244 	if (action == 0)
245 		scheduler_ipi();
246 	else
247 		smp_call_function_interrupt();
248 
249 	return IRQ_HANDLED;
250 }
251 
252 #else
253 
254 /*
255  * BMIPS43xx racey IPIs
256  *
257  * We use one inbound SW IRQ for each CPU.
258  *
259  * A spinlock must be held in order to keep CPUx from accidentally clearing
260  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
261  * same spinlock is used to protect the action masks.
262  */
263 
264 static DEFINE_SPINLOCK(ipi_lock);
265 static DEFINE_PER_CPU(int, ipi_action_mask);
266 
267 static void bmips_send_ipi_single(int cpu, unsigned int action)
268 {
269 	unsigned long flags;
270 
271 	spin_lock_irqsave(&ipi_lock, flags);
272 	set_c0_cause(cpu ? C_SW1 : C_SW0);
273 	per_cpu(ipi_action_mask, cpu) |= action;
274 	irq_enable_hazard();
275 	spin_unlock_irqrestore(&ipi_lock, flags);
276 }
277 
278 static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id)
279 {
280 	unsigned long flags;
281 	int action, cpu = irq - IPI0_IRQ;
282 
283 	spin_lock_irqsave(&ipi_lock, flags);
284 	action = __get_cpu_var(ipi_action_mask);
285 	per_cpu(ipi_action_mask, cpu) = 0;
286 	clear_c0_cause(cpu ? C_SW1 : C_SW0);
287 	spin_unlock_irqrestore(&ipi_lock, flags);
288 
289 	if (action & SMP_RESCHEDULE_YOURSELF)
290 		scheduler_ipi();
291 	if (action & SMP_CALL_FUNCTION)
292 		smp_call_function_interrupt();
293 
294 	return IRQ_HANDLED;
295 }
296 
297 #endif /* BMIPS type */
298 
299 static void bmips_send_ipi_mask(const struct cpumask *mask,
300 	unsigned int action)
301 {
302 	unsigned int i;
303 
304 	for_each_cpu(i, mask)
305 		bmips_send_ipi_single(i, action);
306 }
307 
308 #ifdef CONFIG_HOTPLUG_CPU
309 
310 static int bmips_cpu_disable(void)
311 {
312 	unsigned int cpu = smp_processor_id();
313 
314 	if (cpu == 0)
315 		return -EBUSY;
316 
317 	pr_info("SMP: CPU%d is offline\n", cpu);
318 
319 	set_cpu_online(cpu, false);
320 	cpu_clear(cpu, cpu_callin_map);
321 
322 	local_flush_tlb_all();
323 	local_flush_icache_range(0, ~0);
324 
325 	return 0;
326 }
327 
328 static void bmips_cpu_die(unsigned int cpu)
329 {
330 }
331 
332 void __ref play_dead(void)
333 {
334 	idle_task_exit();
335 
336 	/* flush data cache */
337 	_dma_cache_wback_inv(0, ~0);
338 
339 	/*
340 	 * Wakeup is on SW0 or SW1; disable everything else
341 	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
342 	 * IRQ handlers; this clears ST0_IE and returns immediately.
343 	 */
344 	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
345 	change_c0_status(IE_IRQ5 | IE_IRQ1 | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
346 		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
347 	irq_disable_hazard();
348 
349 	/*
350 	 * wait for SW interrupt from bmips_boot_secondary(), then jump
351 	 * back to start_secondary()
352 	 */
353 	__asm__ __volatile__(
354 	"	wait\n"
355 	"	j	bmips_secondary_reentry\n"
356 	: : : "memory");
357 }
358 
359 #endif /* CONFIG_HOTPLUG_CPU */
360 
361 struct plat_smp_ops bmips_smp_ops = {
362 	.smp_setup		= bmips_smp_setup,
363 	.prepare_cpus		= bmips_prepare_cpus,
364 	.boot_secondary		= bmips_boot_secondary,
365 	.smp_finish		= bmips_smp_finish,
366 	.init_secondary		= bmips_init_secondary,
367 	.cpus_done		= bmips_cpus_done,
368 	.send_ipi_single	= bmips_send_ipi_single,
369 	.send_ipi_mask		= bmips_send_ipi_mask,
370 #ifdef CONFIG_HOTPLUG_CPU
371 	.cpu_disable		= bmips_cpu_disable,
372 	.cpu_die		= bmips_cpu_die,
373 #endif
374 };
375 
376 #endif /* CONFIG_SMP */
377 
378 /***********************************************************************
379  * BMIPS vector relocation
380  * This is primarily used for SMP boot, but it is applicable to some
381  * UP BMIPS systems as well.
382  ***********************************************************************/
383 
384 static void __cpuinit bmips_wr_vec(unsigned long dst, char *start, char *end)
385 {
386 	memcpy((void *)dst, start, end - start);
387 	dma_cache_wback((unsigned long)start, end - start);
388 	local_flush_icache_range(dst, dst + (end - start));
389 	instruction_hazard();
390 }
391 
392 static inline void __cpuinit bmips_nmi_handler_setup(void)
393 {
394 	bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
395 		&bmips_reset_nmi_vec_end);
396 	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
397 		&bmips_smp_int_vec_end);
398 }
399 
400 void __cpuinit bmips_ebase_setup(void)
401 {
402 	unsigned long new_ebase = ebase;
403 	void __iomem __maybe_unused *cbr;
404 
405 	BUG_ON(ebase != CKSEG0);
406 
407 #if defined(CONFIG_CPU_BMIPS4350)
408 	/*
409 	 * BMIPS4350 cannot relocate the normal vectors, but it
410 	 * can relocate the BEV=1 vectors.  So CPU1 starts up at
411 	 * the relocated BEV=1, IV=0 general exception vector @
412 	 * 0xa000_0380.
413 	 *
414 	 * set_uncached_handler() is used here because:
415 	 *  - CPU1 will run this from uncached space
416 	 *  - None of the cacheflush functions are set up yet
417 	 */
418 	set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
419 		&bmips_smp_int_vec, 0x80);
420 	__sync();
421 	return;
422 #elif defined(CONFIG_CPU_BMIPS4380)
423 	/*
424 	 * 0x8000_0000: reset/NMI (initially in kseg1)
425 	 * 0x8000_0400: normal vectors
426 	 */
427 	new_ebase = 0x80000400;
428 	cbr = BMIPS_GET_CBR();
429 	__raw_writel(0x80080800, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
430 	__raw_writel(0xa0080800, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
431 #elif defined(CONFIG_CPU_BMIPS5000)
432 	/*
433 	 * 0x8000_0000: reset/NMI (initially in kseg1)
434 	 * 0x8000_1000: normal vectors
435 	 */
436 	new_ebase = 0x80001000;
437 	write_c0_brcm_bootvec(0xa0088008);
438 	write_c0_ebase(new_ebase);
439 	if (max_cpus > 2)
440 		bmips_write_zscm_reg(0xa0, 0xa008a008);
441 #else
442 	return;
443 #endif
444 	board_nmi_handler_setup = &bmips_nmi_handler_setup;
445 	ebase = new_ebase;
446 }
447 
448 asmlinkage void __weak plat_wired_tlb_setup(void)
449 {
450 	/*
451 	 * Called when starting/restarting a secondary CPU.
452 	 * Kernel stacks and other important data might only be accessible
453 	 * once the wired entries are present.
454 	 */
455 }
456