xref: /openbmc/linux/arch/mips/kernel/smp-bmips.c (revision 65b96377)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10 
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/sched/hotplug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/mm.h>
16 #include <linux/delay.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/cpu.h>
21 #include <linux/cpumask.h>
22 #include <linux/reboot.h>
23 #include <linux/io.h>
24 #include <linux/compiler.h>
25 #include <linux/linkage.h>
26 #include <linux/bug.h>
27 #include <linux/kernel.h>
28 #include <linux/kexec.h>
29 #include <linux/irq.h>
30 
31 #include <asm/time.h>
32 #include <asm/processor.h>
33 #include <asm/bootinfo.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mipsregs.h>
37 #include <asm/bmips.h>
38 #include <asm/traps.h>
39 #include <asm/barrier.h>
40 #include <asm/cpu-features.h>
41 
42 static int __maybe_unused max_cpus = 1;
43 
44 /* these may be configured by the platform code */
45 int bmips_smp_enabled = 1;
46 int bmips_cpu_offset;
47 cpumask_t bmips_booted_mask;
48 unsigned long bmips_tp1_irqs = IE_IRQ1;
49 
50 #define RESET_FROM_KSEG0		0x80080800
51 #define RESET_FROM_KSEG1		0xa0080800
52 
53 static void bmips_set_reset_vec(int cpu, u32 val);
54 
55 #ifdef CONFIG_SMP
56 
57 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
58 unsigned long bmips_smp_boot_sp;
59 unsigned long bmips_smp_boot_gp;
60 
61 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
62 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
63 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
64 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
65 
66 /* SW interrupts 0,1 are used for interprocessor signaling */
67 #define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
68 #define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
69 
70 #define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
71 #define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
72 #define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
73 #define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
74 
75 static void __init bmips_smp_setup(void)
76 {
77 	int i, cpu = 1, boot_cpu = 0;
78 	int cpu_hw_intr;
79 
80 	switch (current_cpu_type()) {
81 	case CPU_BMIPS4350:
82 	case CPU_BMIPS4380:
83 		/* arbitration priority */
84 		clear_c0_brcm_cmt_ctrl(0x30);
85 
86 		/* NBK and weak order flags */
87 		set_c0_brcm_config_0(0x30000);
88 
89 		/* Find out if we are running on TP0 or TP1 */
90 		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
91 
92 		/*
93 		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
94 		 * thread
95 		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
96 		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
97 		 */
98 		if (boot_cpu == 0)
99 			cpu_hw_intr = 0x02;
100 		else
101 			cpu_hw_intr = 0x1d;
102 
103 		change_c0_brcm_cmt_intr(0xf8018000,
104 					(cpu_hw_intr << 27) | (0x03 << 15));
105 
106 		/* single core, 2 threads (2 pipelines) */
107 		max_cpus = 2;
108 
109 		break;
110 	case CPU_BMIPS5000:
111 		/* enable raceless SW interrupts */
112 		set_c0_brcm_config(0x03 << 22);
113 
114 		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
115 		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
116 
117 		/* N cores, 2 threads per core */
118 		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
119 
120 		/* clear any pending SW interrupts */
121 		for (i = 0; i < max_cpus; i++) {
122 			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
123 			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
124 		}
125 
126 		break;
127 	default:
128 		max_cpus = 1;
129 	}
130 
131 	if (!bmips_smp_enabled)
132 		max_cpus = 1;
133 
134 	/* this can be overridden by the BSP */
135 	if (!board_ebase_setup)
136 		board_ebase_setup = &bmips_ebase_setup;
137 
138 	if (max_cpus > 1) {
139 		__cpu_number_map[boot_cpu] = 0;
140 		__cpu_logical_map[0] = boot_cpu;
141 
142 		for (i = 0; i < max_cpus; i++) {
143 			if (i != boot_cpu) {
144 				__cpu_number_map[i] = cpu;
145 				__cpu_logical_map[cpu] = i;
146 				cpu++;
147 			}
148 			set_cpu_possible(i, 1);
149 			set_cpu_present(i, 1);
150 		}
151 	} else {
152 		__cpu_number_map[0] = boot_cpu;
153 		__cpu_logical_map[0] = 0;
154 		set_cpu_possible(0, 1);
155 		set_cpu_present(0, 1);
156 	}
157 }
158 
159 /*
160  * IPI IRQ setup - runs on CPU0
161  */
162 static void bmips_prepare_cpus(unsigned int max_cpus)
163 {
164 	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
165 
166 	switch (current_cpu_type()) {
167 	case CPU_BMIPS4350:
168 	case CPU_BMIPS4380:
169 		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
170 		break;
171 	case CPU_BMIPS5000:
172 		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
173 		break;
174 	default:
175 		return;
176 	}
177 
178 	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
179 			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
180 		panic("Can't request IPI0 interrupt");
181 	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
182 			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
183 		panic("Can't request IPI1 interrupt");
184 }
185 
186 /*
187  * Tell the hardware to boot CPUx - runs on CPU0
188  */
189 static int bmips_boot_secondary(int cpu, struct task_struct *idle)
190 {
191 	bmips_smp_boot_sp = __KSTK_TOS(idle);
192 	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
193 	mb();
194 
195 	/*
196 	 * Initial boot sequence for secondary CPU:
197 	 *   bmips_reset_nmi_vec @ a000_0000 ->
198 	 *   bmips_smp_entry ->
199 	 *   plat_wired_tlb_setup (cached function call; optional) ->
200 	 *   start_secondary (cached jump)
201 	 *
202 	 * Warm restart sequence:
203 	 *   play_dead WAIT loop ->
204 	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
205 	 *   eret to play_dead ->
206 	 *   bmips_secondary_reentry ->
207 	 *   start_secondary
208 	 */
209 
210 	pr_info("SMP: Booting CPU%d...\n", cpu);
211 
212 	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
213 		/* kseg1 might not exist if this CPU enabled XKS01 */
214 		bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
215 
216 		switch (current_cpu_type()) {
217 		case CPU_BMIPS4350:
218 		case CPU_BMIPS4380:
219 			bmips43xx_send_ipi_single(cpu, 0);
220 			break;
221 		case CPU_BMIPS5000:
222 			bmips5000_send_ipi_single(cpu, 0);
223 			break;
224 		}
225 	} else {
226 		bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
227 
228 		switch (current_cpu_type()) {
229 		case CPU_BMIPS4350:
230 		case CPU_BMIPS4380:
231 			/* Reset slave TP1 if booting from TP0 */
232 			if (cpu_logical_map(cpu) == 1)
233 				set_c0_brcm_cmt_ctrl(0x01);
234 			break;
235 		case CPU_BMIPS5000:
236 			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
237 			break;
238 		}
239 		cpumask_set_cpu(cpu, &bmips_booted_mask);
240 	}
241 
242 	return 0;
243 }
244 
245 /*
246  * Early setup - runs on secondary CPU after cache probe
247  */
248 static void bmips_init_secondary(void)
249 {
250 	bmips_cpu_setup();
251 
252 	switch (current_cpu_type()) {
253 	case CPU_BMIPS4350:
254 	case CPU_BMIPS4380:
255 		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
256 		break;
257 	case CPU_BMIPS5000:
258 		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
259 		cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
260 		break;
261 	}
262 }
263 
264 /*
265  * Late setup - runs on secondary CPU before entering the idle loop
266  */
267 static void bmips_smp_finish(void)
268 {
269 	pr_info("SMP: CPU%d is running\n", smp_processor_id());
270 
271 	/* make sure there won't be a timer interrupt for a little while */
272 	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
273 
274 	irq_enable_hazard();
275 	set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
276 	irq_enable_hazard();
277 }
278 
279 /*
280  * BMIPS5000 raceless IPIs
281  *
282  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
283  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
284  * IPI1 is used for SMP_CALL_FUNCTION
285  */
286 
287 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
288 {
289 	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
290 }
291 
292 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
293 {
294 	int action = irq - IPI0_IRQ;
295 
296 	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
297 
298 	if (action == 0)
299 		scheduler_ipi();
300 	else
301 		generic_smp_call_function_interrupt();
302 
303 	return IRQ_HANDLED;
304 }
305 
306 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
307 	unsigned int action)
308 {
309 	unsigned int i;
310 
311 	for_each_cpu(i, mask)
312 		bmips5000_send_ipi_single(i, action);
313 }
314 
315 /*
316  * BMIPS43xx racey IPIs
317  *
318  * We use one inbound SW IRQ for each CPU.
319  *
320  * A spinlock must be held in order to keep CPUx from accidentally clearing
321  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
322  * same spinlock is used to protect the action masks.
323  */
324 
325 static DEFINE_SPINLOCK(ipi_lock);
326 static DEFINE_PER_CPU(int, ipi_action_mask);
327 
328 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
329 {
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(&ipi_lock, flags);
333 	set_c0_cause(cpu ? C_SW1 : C_SW0);
334 	per_cpu(ipi_action_mask, cpu) |= action;
335 	irq_enable_hazard();
336 	spin_unlock_irqrestore(&ipi_lock, flags);
337 }
338 
339 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
340 {
341 	unsigned long flags;
342 	int action, cpu = irq - IPI0_IRQ;
343 
344 	spin_lock_irqsave(&ipi_lock, flags);
345 	action = __this_cpu_read(ipi_action_mask);
346 	per_cpu(ipi_action_mask, cpu) = 0;
347 	clear_c0_cause(cpu ? C_SW1 : C_SW0);
348 	spin_unlock_irqrestore(&ipi_lock, flags);
349 
350 	if (action & SMP_RESCHEDULE_YOURSELF)
351 		scheduler_ipi();
352 	if (action & SMP_CALL_FUNCTION)
353 		generic_smp_call_function_interrupt();
354 
355 	return IRQ_HANDLED;
356 }
357 
358 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
359 	unsigned int action)
360 {
361 	unsigned int i;
362 
363 	for_each_cpu(i, mask)
364 		bmips43xx_send_ipi_single(i, action);
365 }
366 
367 #ifdef CONFIG_HOTPLUG_CPU
368 
369 static int bmips_cpu_disable(void)
370 {
371 	unsigned int cpu = smp_processor_id();
372 
373 	pr_info("SMP: CPU%d is offline\n", cpu);
374 
375 	set_cpu_online(cpu, false);
376 	calculate_cpu_foreign_map();
377 	irq_migrate_all_off_this_cpu();
378 	clear_c0_status(IE_IRQ5);
379 
380 	local_flush_tlb_all();
381 	local_flush_icache_range(0, ~0);
382 
383 	return 0;
384 }
385 
386 static void bmips_cpu_die(unsigned int cpu)
387 {
388 }
389 
390 void __ref play_dead(void)
391 {
392 	idle_task_exit();
393 
394 	/* flush data cache */
395 	_dma_cache_wback_inv(0, ~0);
396 
397 	/*
398 	 * Wakeup is on SW0 or SW1; disable everything else
399 	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
400 	 * IRQ handlers; this clears ST0_IE and returns immediately.
401 	 */
402 	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
403 	change_c0_status(
404 		IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
405 		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
406 	irq_disable_hazard();
407 
408 	/*
409 	 * wait for SW interrupt from bmips_boot_secondary(), then jump
410 	 * back to start_secondary()
411 	 */
412 	__asm__ __volatile__(
413 	"	wait\n"
414 	"	j	bmips_secondary_reentry\n"
415 	: : : "memory");
416 }
417 
418 #endif /* CONFIG_HOTPLUG_CPU */
419 
420 const struct plat_smp_ops bmips43xx_smp_ops = {
421 	.smp_setup		= bmips_smp_setup,
422 	.prepare_cpus		= bmips_prepare_cpus,
423 	.boot_secondary		= bmips_boot_secondary,
424 	.smp_finish		= bmips_smp_finish,
425 	.init_secondary		= bmips_init_secondary,
426 	.send_ipi_single	= bmips43xx_send_ipi_single,
427 	.send_ipi_mask		= bmips43xx_send_ipi_mask,
428 #ifdef CONFIG_HOTPLUG_CPU
429 	.cpu_disable		= bmips_cpu_disable,
430 	.cpu_die		= bmips_cpu_die,
431 #endif
432 #ifdef CONFIG_KEXEC
433 	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
434 #endif
435 };
436 
437 const struct plat_smp_ops bmips5000_smp_ops = {
438 	.smp_setup		= bmips_smp_setup,
439 	.prepare_cpus		= bmips_prepare_cpus,
440 	.boot_secondary		= bmips_boot_secondary,
441 	.smp_finish		= bmips_smp_finish,
442 	.init_secondary		= bmips_init_secondary,
443 	.send_ipi_single	= bmips5000_send_ipi_single,
444 	.send_ipi_mask		= bmips5000_send_ipi_mask,
445 #ifdef CONFIG_HOTPLUG_CPU
446 	.cpu_disable		= bmips_cpu_disable,
447 	.cpu_die		= bmips_cpu_die,
448 #endif
449 #ifdef CONFIG_KEXEC
450 	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
451 #endif
452 };
453 
454 #endif /* CONFIG_SMP */
455 
456 /***********************************************************************
457  * BMIPS vector relocation
458  * This is primarily used for SMP boot, but it is applicable to some
459  * UP BMIPS systems as well.
460  ***********************************************************************/
461 
462 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
463 {
464 	memcpy((void *)dst, start, end - start);
465 	dma_cache_wback(dst, end - start);
466 	local_flush_icache_range(dst, dst + (end - start));
467 	instruction_hazard();
468 }
469 
470 static inline void bmips_nmi_handler_setup(void)
471 {
472 	bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
473 		bmips_reset_nmi_vec_end);
474 	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
475 		bmips_smp_int_vec_end);
476 }
477 
478 struct reset_vec_info {
479 	int cpu;
480 	u32 val;
481 };
482 
483 static void bmips_set_reset_vec_remote(void *vinfo)
484 {
485 	struct reset_vec_info *info = vinfo;
486 	int shift = info->cpu & 0x01 ? 16 : 0;
487 	u32 mask = ~(0xffff << shift), val = info->val >> 16;
488 
489 	preempt_disable();
490 	if (smp_processor_id() > 0) {
491 		smp_call_function_single(0, &bmips_set_reset_vec_remote,
492 					 info, 1);
493 	} else {
494 		if (info->cpu & 0x02) {
495 			/* BMIPS5200 "should" use mask/shift, but it's buggy */
496 			bmips_write_zscm_reg(0xa0, (val << 16) | val);
497 			bmips_read_zscm_reg(0xa0);
498 		} else {
499 			write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
500 					      (val << shift));
501 		}
502 	}
503 	preempt_enable();
504 }
505 
506 static void bmips_set_reset_vec(int cpu, u32 val)
507 {
508 	struct reset_vec_info info;
509 
510 	if (current_cpu_type() == CPU_BMIPS5000) {
511 		/* this needs to run from CPU0 (which is always online) */
512 		info.cpu = cpu;
513 		info.val = val;
514 		bmips_set_reset_vec_remote(&info);
515 	} else {
516 		void __iomem *cbr = BMIPS_GET_CBR();
517 
518 		if (cpu == 0)
519 			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
520 		else {
521 			if (current_cpu_type() != CPU_BMIPS4380)
522 				return;
523 			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
524 		}
525 	}
526 	__sync();
527 	back_to_back_c0_hazard();
528 }
529 
530 void bmips_ebase_setup(void)
531 {
532 	unsigned long new_ebase = ebase;
533 
534 	BUG_ON(ebase != CKSEG0);
535 
536 	switch (current_cpu_type()) {
537 	case CPU_BMIPS4350:
538 		/*
539 		 * BMIPS4350 cannot relocate the normal vectors, but it
540 		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
541 		 * the relocated BEV=1, IV=0 general exception vector @
542 		 * 0xa000_0380.
543 		 *
544 		 * set_uncached_handler() is used here because:
545 		 *  - CPU1 will run this from uncached space
546 		 *  - None of the cacheflush functions are set up yet
547 		 */
548 		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
549 			&bmips_smp_int_vec, 0x80);
550 		__sync();
551 		return;
552 	case CPU_BMIPS3300:
553 	case CPU_BMIPS4380:
554 		/*
555 		 * 0x8000_0000: reset/NMI (initially in kseg1)
556 		 * 0x8000_0400: normal vectors
557 		 */
558 		new_ebase = 0x80000400;
559 		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
560 		break;
561 	case CPU_BMIPS5000:
562 		/*
563 		 * 0x8000_0000: reset/NMI (initially in kseg1)
564 		 * 0x8000_1000: normal vectors
565 		 */
566 		new_ebase = 0x80001000;
567 		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
568 		write_c0_ebase(new_ebase);
569 		break;
570 	default:
571 		return;
572 	}
573 
574 	board_nmi_handler_setup = &bmips_nmi_handler_setup;
575 	ebase = new_ebase;
576 }
577 
578 asmlinkage void __weak plat_wired_tlb_setup(void)
579 {
580 	/*
581 	 * Called when starting/restarting a secondary CPU.
582 	 * Kernel stacks and other important data might only be accessible
583 	 * once the wired entries are present.
584 	 */
585 }
586 
587 void bmips_cpu_setup(void)
588 {
589 	void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
590 	u32 __maybe_unused cfg;
591 
592 	switch (current_cpu_type()) {
593 	case CPU_BMIPS3300:
594 		/* Set BIU to async mode */
595 		set_c0_brcm_bus_pll(BIT(22));
596 		__sync();
597 
598 		/* put the BIU back in sync mode */
599 		clear_c0_brcm_bus_pll(BIT(22));
600 
601 		/* clear BHTD to enable branch history table */
602 		clear_c0_brcm_reset(BIT(16));
603 
604 		/* Flush and enable RAC */
605 		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
606 		__raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
607 		__raw_readl(cbr + BMIPS_RAC_CONFIG);
608 
609 		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
610 		__raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
611 		__raw_readl(cbr + BMIPS_RAC_CONFIG);
612 
613 		cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
614 		__raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
615 		__raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
616 		break;
617 
618 	case CPU_BMIPS4380:
619 		/* CBG workaround for early BMIPS4380 CPUs */
620 		switch (read_c0_prid()) {
621 		case 0x2a040:
622 		case 0x2a042:
623 		case 0x2a044:
624 		case 0x2a060:
625 			cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
626 			__raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
627 			__raw_readl(cbr + BMIPS_L2_CONFIG);
628 		}
629 
630 		/* clear BHTD to enable branch history table */
631 		clear_c0_brcm_config_0(BIT(21));
632 
633 		/* XI/ROTR enable */
634 		set_c0_brcm_config_0(BIT(23));
635 		set_c0_brcm_cmt_ctrl(BIT(15));
636 		break;
637 
638 	case CPU_BMIPS5000:
639 		/* enable RDHWR, BRDHWR */
640 		set_c0_brcm_config(BIT(17) | BIT(21));
641 
642 		/* Disable JTB */
643 		__asm__ __volatile__(
644 		"	.set	noreorder\n"
645 		"	li	$8, 0x5a455048\n"
646 		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
647 		"	.word	0x4008b008\n"	/* mfc0	t0, $22, 8 */
648 		"	li	$9, 0x00008000\n"
649 		"	or	$8, $8, $9\n"
650 		"	.word	0x4088b008\n"	/* mtc0	t0, $22, 8 */
651 		"	sync\n"
652 		"	li	$8, 0x0\n"
653 		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
654 		"	.set	reorder\n"
655 		: : : "$8", "$9");
656 
657 		/* XI enable */
658 		set_c0_brcm_config(BIT(27));
659 
660 		/* enable MIPS32R2 ROR instruction for XI TLB handlers */
661 		__asm__ __volatile__(
662 		"	li	$8, 0x5a455048\n"
663 		"	.word	0x4088b00f\n"	/* mtc0 $8, $22, 15 */
664 		"	nop; nop; nop\n"
665 		"	.word	0x4008b008\n"	/* mfc0 $8, $22, 8 */
666 		"	lui	$9, 0x0100\n"
667 		"	or	$8, $9\n"
668 		"	.word	0x4088b008\n"	/* mtc0 $8, $22, 8 */
669 		: : : "$8", "$9");
670 		break;
671 	}
672 }
673