xref: /openbmc/linux/arch/mips/kernel/smp-bmips.c (revision 1c2dd16a)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10 
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/sched/hotplug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/mm.h>
16 #include <linux/delay.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/cpu.h>
21 #include <linux/cpumask.h>
22 #include <linux/reboot.h>
23 #include <linux/io.h>
24 #include <linux/compiler.h>
25 #include <linux/linkage.h>
26 #include <linux/bug.h>
27 #include <linux/kernel.h>
28 
29 #include <asm/time.h>
30 #include <asm/pgtable.h>
31 #include <asm/processor.h>
32 #include <asm/bootinfo.h>
33 #include <asm/pmon.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mipsregs.h>
37 #include <asm/bmips.h>
38 #include <asm/traps.h>
39 #include <asm/barrier.h>
40 #include <asm/cpu-features.h>
41 
42 static int __maybe_unused max_cpus = 1;
43 
44 /* these may be configured by the platform code */
45 int bmips_smp_enabled = 1;
46 int bmips_cpu_offset;
47 cpumask_t bmips_booted_mask;
48 unsigned long bmips_tp1_irqs = IE_IRQ1;
49 
50 #define RESET_FROM_KSEG0		0x80080800
51 #define RESET_FROM_KSEG1		0xa0080800
52 
53 static void bmips_set_reset_vec(int cpu, u32 val);
54 
55 #ifdef CONFIG_SMP
56 
57 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
58 unsigned long bmips_smp_boot_sp;
59 unsigned long bmips_smp_boot_gp;
60 
61 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
62 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
63 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
64 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
65 
66 /* SW interrupts 0,1 are used for interprocessor signaling */
67 #define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
68 #define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
69 
70 #define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
71 #define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
72 #define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
73 #define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
74 
75 static void __init bmips_smp_setup(void)
76 {
77 	int i, cpu = 1, boot_cpu = 0;
78 	int cpu_hw_intr;
79 
80 	switch (current_cpu_type()) {
81 	case CPU_BMIPS4350:
82 	case CPU_BMIPS4380:
83 		/* arbitration priority */
84 		clear_c0_brcm_cmt_ctrl(0x30);
85 
86 		/* NBK and weak order flags */
87 		set_c0_brcm_config_0(0x30000);
88 
89 		/* Find out if we are running on TP0 or TP1 */
90 		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
91 
92 		/*
93 		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
94 		 * thread
95 		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
96 		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
97 		 */
98 		if (boot_cpu == 0)
99 			cpu_hw_intr = 0x02;
100 		else
101 			cpu_hw_intr = 0x1d;
102 
103 		change_c0_brcm_cmt_intr(0xf8018000,
104 					(cpu_hw_intr << 27) | (0x03 << 15));
105 
106 		/* single core, 2 threads (2 pipelines) */
107 		max_cpus = 2;
108 
109 		break;
110 	case CPU_BMIPS5000:
111 		/* enable raceless SW interrupts */
112 		set_c0_brcm_config(0x03 << 22);
113 
114 		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
115 		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
116 
117 		/* N cores, 2 threads per core */
118 		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
119 
120 		/* clear any pending SW interrupts */
121 		for (i = 0; i < max_cpus; i++) {
122 			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
123 			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
124 		}
125 
126 		break;
127 	default:
128 		max_cpus = 1;
129 	}
130 
131 	if (!bmips_smp_enabled)
132 		max_cpus = 1;
133 
134 	/* this can be overridden by the BSP */
135 	if (!board_ebase_setup)
136 		board_ebase_setup = &bmips_ebase_setup;
137 
138 	__cpu_number_map[boot_cpu] = 0;
139 	__cpu_logical_map[0] = boot_cpu;
140 
141 	for (i = 0; i < max_cpus; i++) {
142 		if (i != boot_cpu) {
143 			__cpu_number_map[i] = cpu;
144 			__cpu_logical_map[cpu] = i;
145 			cpu++;
146 		}
147 		set_cpu_possible(i, 1);
148 		set_cpu_present(i, 1);
149 	}
150 }
151 
152 /*
153  * IPI IRQ setup - runs on CPU0
154  */
155 static void bmips_prepare_cpus(unsigned int max_cpus)
156 {
157 	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
158 
159 	switch (current_cpu_type()) {
160 	case CPU_BMIPS4350:
161 	case CPU_BMIPS4380:
162 		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
163 		break;
164 	case CPU_BMIPS5000:
165 		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
166 		break;
167 	default:
168 		return;
169 	}
170 
171 	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
172 			"smp_ipi0", NULL))
173 		panic("Can't request IPI0 interrupt");
174 	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
175 			"smp_ipi1", NULL))
176 		panic("Can't request IPI1 interrupt");
177 }
178 
179 /*
180  * Tell the hardware to boot CPUx - runs on CPU0
181  */
182 static void bmips_boot_secondary(int cpu, struct task_struct *idle)
183 {
184 	bmips_smp_boot_sp = __KSTK_TOS(idle);
185 	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
186 	mb();
187 
188 	/*
189 	 * Initial boot sequence for secondary CPU:
190 	 *   bmips_reset_nmi_vec @ a000_0000 ->
191 	 *   bmips_smp_entry ->
192 	 *   plat_wired_tlb_setup (cached function call; optional) ->
193 	 *   start_secondary (cached jump)
194 	 *
195 	 * Warm restart sequence:
196 	 *   play_dead WAIT loop ->
197 	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
198 	 *   eret to play_dead ->
199 	 *   bmips_secondary_reentry ->
200 	 *   start_secondary
201 	 */
202 
203 	pr_info("SMP: Booting CPU%d...\n", cpu);
204 
205 	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
206 		/* kseg1 might not exist if this CPU enabled XKS01 */
207 		bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
208 
209 		switch (current_cpu_type()) {
210 		case CPU_BMIPS4350:
211 		case CPU_BMIPS4380:
212 			bmips43xx_send_ipi_single(cpu, 0);
213 			break;
214 		case CPU_BMIPS5000:
215 			bmips5000_send_ipi_single(cpu, 0);
216 			break;
217 		}
218 	} else {
219 		bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
220 
221 		switch (current_cpu_type()) {
222 		case CPU_BMIPS4350:
223 		case CPU_BMIPS4380:
224 			/* Reset slave TP1 if booting from TP0 */
225 			if (cpu_logical_map(cpu) == 1)
226 				set_c0_brcm_cmt_ctrl(0x01);
227 			break;
228 		case CPU_BMIPS5000:
229 			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
230 			break;
231 		}
232 		cpumask_set_cpu(cpu, &bmips_booted_mask);
233 	}
234 }
235 
236 /*
237  * Early setup - runs on secondary CPU after cache probe
238  */
239 static void bmips_init_secondary(void)
240 {
241 	switch (current_cpu_type()) {
242 	case CPU_BMIPS4350:
243 	case CPU_BMIPS4380:
244 		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
245 		break;
246 	case CPU_BMIPS5000:
247 		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
248 		current_cpu_data.core = (read_c0_brcm_config() >> 25) & 3;
249 		break;
250 	}
251 }
252 
253 /*
254  * Late setup - runs on secondary CPU before entering the idle loop
255  */
256 static void bmips_smp_finish(void)
257 {
258 	pr_info("SMP: CPU%d is running\n", smp_processor_id());
259 
260 	/* make sure there won't be a timer interrupt for a little while */
261 	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
262 
263 	irq_enable_hazard();
264 	set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
265 	irq_enable_hazard();
266 }
267 
268 /*
269  * BMIPS5000 raceless IPIs
270  *
271  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
272  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
273  * IPI1 is used for SMP_CALL_FUNCTION
274  */
275 
276 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
277 {
278 	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
279 }
280 
281 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
282 {
283 	int action = irq - IPI0_IRQ;
284 
285 	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
286 
287 	if (action == 0)
288 		scheduler_ipi();
289 	else
290 		generic_smp_call_function_interrupt();
291 
292 	return IRQ_HANDLED;
293 }
294 
295 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
296 	unsigned int action)
297 {
298 	unsigned int i;
299 
300 	for_each_cpu(i, mask)
301 		bmips5000_send_ipi_single(i, action);
302 }
303 
304 /*
305  * BMIPS43xx racey IPIs
306  *
307  * We use one inbound SW IRQ for each CPU.
308  *
309  * A spinlock must be held in order to keep CPUx from accidentally clearing
310  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
311  * same spinlock is used to protect the action masks.
312  */
313 
314 static DEFINE_SPINLOCK(ipi_lock);
315 static DEFINE_PER_CPU(int, ipi_action_mask);
316 
317 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
318 {
319 	unsigned long flags;
320 
321 	spin_lock_irqsave(&ipi_lock, flags);
322 	set_c0_cause(cpu ? C_SW1 : C_SW0);
323 	per_cpu(ipi_action_mask, cpu) |= action;
324 	irq_enable_hazard();
325 	spin_unlock_irqrestore(&ipi_lock, flags);
326 }
327 
328 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
329 {
330 	unsigned long flags;
331 	int action, cpu = irq - IPI0_IRQ;
332 
333 	spin_lock_irqsave(&ipi_lock, flags);
334 	action = __this_cpu_read(ipi_action_mask);
335 	per_cpu(ipi_action_mask, cpu) = 0;
336 	clear_c0_cause(cpu ? C_SW1 : C_SW0);
337 	spin_unlock_irqrestore(&ipi_lock, flags);
338 
339 	if (action & SMP_RESCHEDULE_YOURSELF)
340 		scheduler_ipi();
341 	if (action & SMP_CALL_FUNCTION)
342 		generic_smp_call_function_interrupt();
343 
344 	return IRQ_HANDLED;
345 }
346 
347 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
348 	unsigned int action)
349 {
350 	unsigned int i;
351 
352 	for_each_cpu(i, mask)
353 		bmips43xx_send_ipi_single(i, action);
354 }
355 
356 #ifdef CONFIG_HOTPLUG_CPU
357 
358 static int bmips_cpu_disable(void)
359 {
360 	unsigned int cpu = smp_processor_id();
361 
362 	if (cpu == 0)
363 		return -EBUSY;
364 
365 	pr_info("SMP: CPU%d is offline\n", cpu);
366 
367 	set_cpu_online(cpu, false);
368 	calculate_cpu_foreign_map();
369 	irq_cpu_offline();
370 	clear_c0_status(IE_IRQ5);
371 
372 	local_flush_tlb_all();
373 	local_flush_icache_range(0, ~0);
374 
375 	return 0;
376 }
377 
378 static void bmips_cpu_die(unsigned int cpu)
379 {
380 }
381 
382 void __ref play_dead(void)
383 {
384 	idle_task_exit();
385 
386 	/* flush data cache */
387 	_dma_cache_wback_inv(0, ~0);
388 
389 	/*
390 	 * Wakeup is on SW0 or SW1; disable everything else
391 	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
392 	 * IRQ handlers; this clears ST0_IE and returns immediately.
393 	 */
394 	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
395 	change_c0_status(
396 		IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
397 		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
398 	irq_disable_hazard();
399 
400 	/*
401 	 * wait for SW interrupt from bmips_boot_secondary(), then jump
402 	 * back to start_secondary()
403 	 */
404 	__asm__ __volatile__(
405 	"	wait\n"
406 	"	j	bmips_secondary_reentry\n"
407 	: : : "memory");
408 }
409 
410 #endif /* CONFIG_HOTPLUG_CPU */
411 
412 struct plat_smp_ops bmips43xx_smp_ops = {
413 	.smp_setup		= bmips_smp_setup,
414 	.prepare_cpus		= bmips_prepare_cpus,
415 	.boot_secondary		= bmips_boot_secondary,
416 	.smp_finish		= bmips_smp_finish,
417 	.init_secondary		= bmips_init_secondary,
418 	.send_ipi_single	= bmips43xx_send_ipi_single,
419 	.send_ipi_mask		= bmips43xx_send_ipi_mask,
420 #ifdef CONFIG_HOTPLUG_CPU
421 	.cpu_disable		= bmips_cpu_disable,
422 	.cpu_die		= bmips_cpu_die,
423 #endif
424 };
425 
426 struct plat_smp_ops bmips5000_smp_ops = {
427 	.smp_setup		= bmips_smp_setup,
428 	.prepare_cpus		= bmips_prepare_cpus,
429 	.boot_secondary		= bmips_boot_secondary,
430 	.smp_finish		= bmips_smp_finish,
431 	.init_secondary		= bmips_init_secondary,
432 	.send_ipi_single	= bmips5000_send_ipi_single,
433 	.send_ipi_mask		= bmips5000_send_ipi_mask,
434 #ifdef CONFIG_HOTPLUG_CPU
435 	.cpu_disable		= bmips_cpu_disable,
436 	.cpu_die		= bmips_cpu_die,
437 #endif
438 };
439 
440 #endif /* CONFIG_SMP */
441 
442 /***********************************************************************
443  * BMIPS vector relocation
444  * This is primarily used for SMP boot, but it is applicable to some
445  * UP BMIPS systems as well.
446  ***********************************************************************/
447 
448 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
449 {
450 	memcpy((void *)dst, start, end - start);
451 	dma_cache_wback(dst, end - start);
452 	local_flush_icache_range(dst, dst + (end - start));
453 	instruction_hazard();
454 }
455 
456 static inline void bmips_nmi_handler_setup(void)
457 {
458 	bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
459 		&bmips_reset_nmi_vec_end);
460 	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
461 		&bmips_smp_int_vec_end);
462 }
463 
464 struct reset_vec_info {
465 	int cpu;
466 	u32 val;
467 };
468 
469 static void bmips_set_reset_vec_remote(void *vinfo)
470 {
471 	struct reset_vec_info *info = vinfo;
472 	int shift = info->cpu & 0x01 ? 16 : 0;
473 	u32 mask = ~(0xffff << shift), val = info->val >> 16;
474 
475 	preempt_disable();
476 	if (smp_processor_id() > 0) {
477 		smp_call_function_single(0, &bmips_set_reset_vec_remote,
478 					 info, 1);
479 	} else {
480 		if (info->cpu & 0x02) {
481 			/* BMIPS5200 "should" use mask/shift, but it's buggy */
482 			bmips_write_zscm_reg(0xa0, (val << 16) | val);
483 			bmips_read_zscm_reg(0xa0);
484 		} else {
485 			write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
486 					      (val << shift));
487 		}
488 	}
489 	preempt_enable();
490 }
491 
492 static void bmips_set_reset_vec(int cpu, u32 val)
493 {
494 	struct reset_vec_info info;
495 
496 	if (current_cpu_type() == CPU_BMIPS5000) {
497 		/* this needs to run from CPU0 (which is always online) */
498 		info.cpu = cpu;
499 		info.val = val;
500 		bmips_set_reset_vec_remote(&info);
501 	} else {
502 		void __iomem *cbr = BMIPS_GET_CBR();
503 
504 		if (cpu == 0)
505 			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
506 		else {
507 			if (current_cpu_type() != CPU_BMIPS4380)
508 				return;
509 			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
510 		}
511 	}
512 	__sync();
513 	back_to_back_c0_hazard();
514 }
515 
516 void bmips_ebase_setup(void)
517 {
518 	unsigned long new_ebase = ebase;
519 
520 	BUG_ON(ebase != CKSEG0);
521 
522 	switch (current_cpu_type()) {
523 	case CPU_BMIPS4350:
524 		/*
525 		 * BMIPS4350 cannot relocate the normal vectors, but it
526 		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
527 		 * the relocated BEV=1, IV=0 general exception vector @
528 		 * 0xa000_0380.
529 		 *
530 		 * set_uncached_handler() is used here because:
531 		 *  - CPU1 will run this from uncached space
532 		 *  - None of the cacheflush functions are set up yet
533 		 */
534 		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
535 			&bmips_smp_int_vec, 0x80);
536 		__sync();
537 		return;
538 	case CPU_BMIPS3300:
539 	case CPU_BMIPS4380:
540 		/*
541 		 * 0x8000_0000: reset/NMI (initially in kseg1)
542 		 * 0x8000_0400: normal vectors
543 		 */
544 		new_ebase = 0x80000400;
545 		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
546 		break;
547 	case CPU_BMIPS5000:
548 		/*
549 		 * 0x8000_0000: reset/NMI (initially in kseg1)
550 		 * 0x8000_1000: normal vectors
551 		 */
552 		new_ebase = 0x80001000;
553 		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
554 		write_c0_ebase(new_ebase);
555 		break;
556 	default:
557 		return;
558 	}
559 
560 	board_nmi_handler_setup = &bmips_nmi_handler_setup;
561 	ebase = new_ebase;
562 }
563 
564 asmlinkage void __weak plat_wired_tlb_setup(void)
565 {
566 	/*
567 	 * Called when starting/restarting a secondary CPU.
568 	 * Kernel stacks and other important data might only be accessible
569 	 * once the wired entries are present.
570 	 */
571 }
572 
573 void __init bmips_cpu_setup(void)
574 {
575 	void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
576 	u32 __maybe_unused cfg;
577 
578 	switch (current_cpu_type()) {
579 	case CPU_BMIPS3300:
580 		/* Set BIU to async mode */
581 		set_c0_brcm_bus_pll(BIT(22));
582 		__sync();
583 
584 		/* put the BIU back in sync mode */
585 		clear_c0_brcm_bus_pll(BIT(22));
586 
587 		/* clear BHTD to enable branch history table */
588 		clear_c0_brcm_reset(BIT(16));
589 
590 		/* Flush and enable RAC */
591 		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
592 		__raw_writel(cfg | 0x100, BMIPS_RAC_CONFIG);
593 		__raw_readl(cbr + BMIPS_RAC_CONFIG);
594 
595 		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
596 		__raw_writel(cfg | 0xf, BMIPS_RAC_CONFIG);
597 		__raw_readl(cbr + BMIPS_RAC_CONFIG);
598 
599 		cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
600 		__raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
601 		__raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
602 		break;
603 
604 	case CPU_BMIPS4380:
605 		/* CBG workaround for early BMIPS4380 CPUs */
606 		switch (read_c0_prid()) {
607 		case 0x2a040:
608 		case 0x2a042:
609 		case 0x2a044:
610 		case 0x2a060:
611 			cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
612 			__raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
613 			__raw_readl(cbr + BMIPS_L2_CONFIG);
614 		}
615 
616 		/* clear BHTD to enable branch history table */
617 		clear_c0_brcm_config_0(BIT(21));
618 
619 		/* XI/ROTR enable */
620 		set_c0_brcm_config_0(BIT(23));
621 		set_c0_brcm_cmt_ctrl(BIT(15));
622 		break;
623 
624 	case CPU_BMIPS5000:
625 		/* enable RDHWR, BRDHWR */
626 		set_c0_brcm_config(BIT(17) | BIT(21));
627 
628 		/* Disable JTB */
629 		__asm__ __volatile__(
630 		"	.set	noreorder\n"
631 		"	li	$8, 0x5a455048\n"
632 		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
633 		"	.word	0x4008b008\n"	/* mfc0	t0, $22, 8 */
634 		"	li	$9, 0x00008000\n"
635 		"	or	$8, $8, $9\n"
636 		"	.word	0x4088b008\n"	/* mtc0	t0, $22, 8 */
637 		"	sync\n"
638 		"	li	$8, 0x0\n"
639 		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
640 		"	.set	reorder\n"
641 		: : : "$8", "$9");
642 
643 		/* XI enable */
644 		set_c0_brcm_config(BIT(27));
645 
646 		/* enable MIPS32R2 ROR instruction for XI TLB handlers */
647 		__asm__ __volatile__(
648 		"	li	$8, 0x5a455048\n"
649 		"	.word	0x4088b00f\n"	/* mtc0 $8, $22, 15 */
650 		"	nop; nop; nop\n"
651 		"	.word	0x4008b008\n"	/* mfc0 $8, $22, 8 */
652 		"	lui	$9, 0x0100\n"
653 		"	or	$8, $9\n"
654 		"	.word	0x4088b008\n"	/* mtc0 $8, $22, 8 */
655 		: : : "$8", "$9");
656 		break;
657 	}
658 }
659