xref: /openbmc/linux/arch/mips/kernel/smp-bmips.c (revision 142dbcf3)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10 
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/sched/hotplug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/mm.h>
16 #include <linux/delay.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/cpu.h>
21 #include <linux/cpumask.h>
22 #include <linux/reboot.h>
23 #include <linux/io.h>
24 #include <linux/compiler.h>
25 #include <linux/linkage.h>
26 #include <linux/bug.h>
27 #include <linux/kernel.h>
28 #include <linux/kexec.h>
29 #include <linux/irq.h>
30 
31 #include <asm/time.h>
32 #include <asm/processor.h>
33 #include <asm/bootinfo.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mipsregs.h>
37 #include <asm/bmips.h>
38 #include <asm/traps.h>
39 #include <asm/barrier.h>
40 #include <asm/cpu-features.h>
41 
42 static int __maybe_unused max_cpus = 1;
43 
44 /* these may be configured by the platform code */
45 int bmips_smp_enabled = 1;
46 int bmips_cpu_offset;
47 cpumask_t bmips_booted_mask;
48 unsigned long bmips_tp1_irqs = IE_IRQ1;
49 
50 #define RESET_FROM_KSEG0		0x80080800
51 #define RESET_FROM_KSEG1		0xa0080800
52 
53 static void bmips_set_reset_vec(int cpu, u32 val);
54 
55 #ifdef CONFIG_SMP
56 
57 #include <asm/smp.h>
58 
59 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
60 unsigned long bmips_smp_boot_sp;
61 unsigned long bmips_smp_boot_gp;
62 
63 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
64 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
65 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
66 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
67 
68 /* SW interrupts 0,1 are used for interprocessor signaling */
69 #define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
70 #define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
71 
72 #define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
73 #define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
74 #define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
75 #define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
76 
77 static void __init bmips_smp_setup(void)
78 {
79 	int i, cpu = 1, boot_cpu = 0;
80 	int cpu_hw_intr;
81 
82 	switch (current_cpu_type()) {
83 	case CPU_BMIPS4350:
84 	case CPU_BMIPS4380:
85 		/* arbitration priority */
86 		clear_c0_brcm_cmt_ctrl(0x30);
87 
88 		/* NBK and weak order flags */
89 		set_c0_brcm_config_0(0x30000);
90 
91 		/* Find out if we are running on TP0 or TP1 */
92 		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
93 
94 		/*
95 		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
96 		 * thread
97 		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
98 		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
99 		 */
100 		if (boot_cpu == 0)
101 			cpu_hw_intr = 0x02;
102 		else
103 			cpu_hw_intr = 0x1d;
104 
105 		change_c0_brcm_cmt_intr(0xf8018000,
106 					(cpu_hw_intr << 27) | (0x03 << 15));
107 
108 		/* single core, 2 threads (2 pipelines) */
109 		max_cpus = 2;
110 
111 		break;
112 	case CPU_BMIPS5000:
113 		/* enable raceless SW interrupts */
114 		set_c0_brcm_config(0x03 << 22);
115 
116 		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
117 		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
118 
119 		/* N cores, 2 threads per core */
120 		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
121 
122 		/* clear any pending SW interrupts */
123 		for (i = 0; i < max_cpus; i++) {
124 			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
125 			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
126 		}
127 
128 		break;
129 	default:
130 		max_cpus = 1;
131 	}
132 
133 	if (!bmips_smp_enabled)
134 		max_cpus = 1;
135 
136 	/* this can be overridden by the BSP */
137 	if (!board_ebase_setup)
138 		board_ebase_setup = &bmips_ebase_setup;
139 
140 	if (max_cpus > 1) {
141 		__cpu_number_map[boot_cpu] = 0;
142 		__cpu_logical_map[0] = boot_cpu;
143 
144 		for (i = 0; i < max_cpus; i++) {
145 			if (i != boot_cpu) {
146 				__cpu_number_map[i] = cpu;
147 				__cpu_logical_map[cpu] = i;
148 				cpu++;
149 			}
150 			set_cpu_possible(i, 1);
151 			set_cpu_present(i, 1);
152 		}
153 	} else {
154 		__cpu_number_map[0] = boot_cpu;
155 		__cpu_logical_map[0] = 0;
156 		set_cpu_possible(0, 1);
157 		set_cpu_present(0, 1);
158 	}
159 }
160 
161 /*
162  * IPI IRQ setup - runs on CPU0
163  */
164 static void bmips_prepare_cpus(unsigned int max_cpus)
165 {
166 	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
167 
168 	switch (current_cpu_type()) {
169 	case CPU_BMIPS4350:
170 	case CPU_BMIPS4380:
171 		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
172 		break;
173 	case CPU_BMIPS5000:
174 		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
175 		break;
176 	default:
177 		return;
178 	}
179 
180 	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
181 			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
182 		panic("Can't request IPI0 interrupt");
183 	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
184 			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
185 		panic("Can't request IPI1 interrupt");
186 }
187 
188 /*
189  * Tell the hardware to boot CPUx - runs on CPU0
190  */
191 static int bmips_boot_secondary(int cpu, struct task_struct *idle)
192 {
193 	bmips_smp_boot_sp = __KSTK_TOS(idle);
194 	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
195 	mb();
196 
197 	/*
198 	 * Initial boot sequence for secondary CPU:
199 	 *   bmips_reset_nmi_vec @ a000_0000 ->
200 	 *   bmips_smp_entry ->
201 	 *   plat_wired_tlb_setup (cached function call; optional) ->
202 	 *   start_secondary (cached jump)
203 	 *
204 	 * Warm restart sequence:
205 	 *   play_dead WAIT loop ->
206 	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
207 	 *   eret to play_dead ->
208 	 *   bmips_secondary_reentry ->
209 	 *   start_secondary
210 	 */
211 
212 	pr_info("SMP: Booting CPU%d...\n", cpu);
213 
214 	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
215 		/* kseg1 might not exist if this CPU enabled XKS01 */
216 		bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
217 
218 		switch (current_cpu_type()) {
219 		case CPU_BMIPS4350:
220 		case CPU_BMIPS4380:
221 			bmips43xx_send_ipi_single(cpu, 0);
222 			break;
223 		case CPU_BMIPS5000:
224 			bmips5000_send_ipi_single(cpu, 0);
225 			break;
226 		}
227 	} else {
228 		bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
229 
230 		switch (current_cpu_type()) {
231 		case CPU_BMIPS4350:
232 		case CPU_BMIPS4380:
233 			/* Reset slave TP1 if booting from TP0 */
234 			if (cpu_logical_map(cpu) == 1)
235 				set_c0_brcm_cmt_ctrl(0x01);
236 			break;
237 		case CPU_BMIPS5000:
238 			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
239 			break;
240 		}
241 		cpumask_set_cpu(cpu, &bmips_booted_mask);
242 	}
243 
244 	return 0;
245 }
246 
247 /*
248  * Early setup - runs on secondary CPU after cache probe
249  */
250 static void bmips_init_secondary(void)
251 {
252 	bmips_cpu_setup();
253 
254 	switch (current_cpu_type()) {
255 	case CPU_BMIPS4350:
256 	case CPU_BMIPS4380:
257 		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
258 		break;
259 	case CPU_BMIPS5000:
260 		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
261 		cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
262 		break;
263 	}
264 }
265 
266 /*
267  * Late setup - runs on secondary CPU before entering the idle loop
268  */
269 static void bmips_smp_finish(void)
270 {
271 	pr_info("SMP: CPU%d is running\n", smp_processor_id());
272 
273 	/* make sure there won't be a timer interrupt for a little while */
274 	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
275 
276 	irq_enable_hazard();
277 	set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
278 	irq_enable_hazard();
279 }
280 
281 /*
282  * BMIPS5000 raceless IPIs
283  *
284  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
285  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
286  * IPI1 is used for SMP_CALL_FUNCTION
287  */
288 
289 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
290 {
291 	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
292 }
293 
294 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
295 {
296 	int action = irq - IPI0_IRQ;
297 
298 	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
299 
300 	if (action == 0)
301 		scheduler_ipi();
302 	else
303 		generic_smp_call_function_interrupt();
304 
305 	return IRQ_HANDLED;
306 }
307 
308 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
309 	unsigned int action)
310 {
311 	unsigned int i;
312 
313 	for_each_cpu(i, mask)
314 		bmips5000_send_ipi_single(i, action);
315 }
316 
317 /*
318  * BMIPS43xx racey IPIs
319  *
320  * We use one inbound SW IRQ for each CPU.
321  *
322  * A spinlock must be held in order to keep CPUx from accidentally clearing
323  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
324  * same spinlock is used to protect the action masks.
325  */
326 
327 static DEFINE_SPINLOCK(ipi_lock);
328 static DEFINE_PER_CPU(int, ipi_action_mask);
329 
330 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
331 {
332 	unsigned long flags;
333 
334 	spin_lock_irqsave(&ipi_lock, flags);
335 	set_c0_cause(cpu ? C_SW1 : C_SW0);
336 	per_cpu(ipi_action_mask, cpu) |= action;
337 	irq_enable_hazard();
338 	spin_unlock_irqrestore(&ipi_lock, flags);
339 }
340 
341 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
342 {
343 	unsigned long flags;
344 	int action, cpu = irq - IPI0_IRQ;
345 
346 	spin_lock_irqsave(&ipi_lock, flags);
347 	action = __this_cpu_read(ipi_action_mask);
348 	per_cpu(ipi_action_mask, cpu) = 0;
349 	clear_c0_cause(cpu ? C_SW1 : C_SW0);
350 	spin_unlock_irqrestore(&ipi_lock, flags);
351 
352 	if (action & SMP_RESCHEDULE_YOURSELF)
353 		scheduler_ipi();
354 	if (action & SMP_CALL_FUNCTION)
355 		generic_smp_call_function_interrupt();
356 
357 	return IRQ_HANDLED;
358 }
359 
360 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
361 	unsigned int action)
362 {
363 	unsigned int i;
364 
365 	for_each_cpu(i, mask)
366 		bmips43xx_send_ipi_single(i, action);
367 }
368 
369 #ifdef CONFIG_HOTPLUG_CPU
370 
371 static int bmips_cpu_disable(void)
372 {
373 	unsigned int cpu = smp_processor_id();
374 
375 	pr_info("SMP: CPU%d is offline\n", cpu);
376 
377 	set_cpu_online(cpu, false);
378 	calculate_cpu_foreign_map();
379 	irq_migrate_all_off_this_cpu();
380 	clear_c0_status(IE_IRQ5);
381 
382 	local_flush_tlb_all();
383 	local_flush_icache_range(0, ~0);
384 
385 	return 0;
386 }
387 
388 static void bmips_cpu_die(unsigned int cpu)
389 {
390 }
391 
392 void __ref play_dead(void)
393 {
394 	idle_task_exit();
395 
396 	/* flush data cache */
397 	_dma_cache_wback_inv(0, ~0);
398 
399 	/*
400 	 * Wakeup is on SW0 or SW1; disable everything else
401 	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
402 	 * IRQ handlers; this clears ST0_IE and returns immediately.
403 	 */
404 	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
405 	change_c0_status(
406 		IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
407 		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
408 	irq_disable_hazard();
409 
410 	/*
411 	 * wait for SW interrupt from bmips_boot_secondary(), then jump
412 	 * back to start_secondary()
413 	 */
414 	__asm__ __volatile__(
415 	"	wait\n"
416 	"	j	bmips_secondary_reentry\n"
417 	: : : "memory");
418 }
419 
420 #endif /* CONFIG_HOTPLUG_CPU */
421 
422 const struct plat_smp_ops bmips43xx_smp_ops = {
423 	.smp_setup		= bmips_smp_setup,
424 	.prepare_cpus		= bmips_prepare_cpus,
425 	.boot_secondary		= bmips_boot_secondary,
426 	.smp_finish		= bmips_smp_finish,
427 	.init_secondary		= bmips_init_secondary,
428 	.send_ipi_single	= bmips43xx_send_ipi_single,
429 	.send_ipi_mask		= bmips43xx_send_ipi_mask,
430 #ifdef CONFIG_HOTPLUG_CPU
431 	.cpu_disable		= bmips_cpu_disable,
432 	.cpu_die		= bmips_cpu_die,
433 #endif
434 #ifdef CONFIG_KEXEC
435 	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
436 #endif
437 };
438 
439 const struct plat_smp_ops bmips5000_smp_ops = {
440 	.smp_setup		= bmips_smp_setup,
441 	.prepare_cpus		= bmips_prepare_cpus,
442 	.boot_secondary		= bmips_boot_secondary,
443 	.smp_finish		= bmips_smp_finish,
444 	.init_secondary		= bmips_init_secondary,
445 	.send_ipi_single	= bmips5000_send_ipi_single,
446 	.send_ipi_mask		= bmips5000_send_ipi_mask,
447 #ifdef CONFIG_HOTPLUG_CPU
448 	.cpu_disable		= bmips_cpu_disable,
449 	.cpu_die		= bmips_cpu_die,
450 #endif
451 #ifdef CONFIG_KEXEC
452 	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
453 #endif
454 };
455 
456 #endif /* CONFIG_SMP */
457 
458 /***********************************************************************
459  * BMIPS vector relocation
460  * This is primarily used for SMP boot, but it is applicable to some
461  * UP BMIPS systems as well.
462  ***********************************************************************/
463 
464 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
465 {
466 	memcpy((void *)dst, start, end - start);
467 	dma_cache_wback(dst, end - start);
468 	local_flush_icache_range(dst, dst + (end - start));
469 	instruction_hazard();
470 }
471 
472 static inline void bmips_nmi_handler_setup(void)
473 {
474 	bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
475 		bmips_reset_nmi_vec_end);
476 	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
477 		bmips_smp_int_vec_end);
478 }
479 
480 struct reset_vec_info {
481 	int cpu;
482 	u32 val;
483 };
484 
485 static void bmips_set_reset_vec_remote(void *vinfo)
486 {
487 	struct reset_vec_info *info = vinfo;
488 	int shift = info->cpu & 0x01 ? 16 : 0;
489 	u32 mask = ~(0xffff << shift), val = info->val >> 16;
490 
491 	preempt_disable();
492 	if (smp_processor_id() > 0) {
493 		smp_call_function_single(0, &bmips_set_reset_vec_remote,
494 					 info, 1);
495 	} else {
496 		if (info->cpu & 0x02) {
497 			/* BMIPS5200 "should" use mask/shift, but it's buggy */
498 			bmips_write_zscm_reg(0xa0, (val << 16) | val);
499 			bmips_read_zscm_reg(0xa0);
500 		} else {
501 			write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
502 					      (val << shift));
503 		}
504 	}
505 	preempt_enable();
506 }
507 
508 static void bmips_set_reset_vec(int cpu, u32 val)
509 {
510 	struct reset_vec_info info;
511 
512 	if (current_cpu_type() == CPU_BMIPS5000) {
513 		/* this needs to run from CPU0 (which is always online) */
514 		info.cpu = cpu;
515 		info.val = val;
516 		bmips_set_reset_vec_remote(&info);
517 	} else {
518 		void __iomem *cbr = BMIPS_GET_CBR();
519 
520 		if (cpu == 0)
521 			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
522 		else {
523 			if (current_cpu_type() != CPU_BMIPS4380)
524 				return;
525 			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
526 		}
527 	}
528 	__sync();
529 	back_to_back_c0_hazard();
530 }
531 
532 void bmips_ebase_setup(void)
533 {
534 	unsigned long new_ebase = ebase;
535 
536 	BUG_ON(ebase != CKSEG0);
537 
538 	switch (current_cpu_type()) {
539 	case CPU_BMIPS4350:
540 		/*
541 		 * BMIPS4350 cannot relocate the normal vectors, but it
542 		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
543 		 * the relocated BEV=1, IV=0 general exception vector @
544 		 * 0xa000_0380.
545 		 *
546 		 * set_uncached_handler() is used here because:
547 		 *  - CPU1 will run this from uncached space
548 		 *  - None of the cacheflush functions are set up yet
549 		 */
550 		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
551 			&bmips_smp_int_vec, 0x80);
552 		__sync();
553 		return;
554 	case CPU_BMIPS3300:
555 	case CPU_BMIPS4380:
556 		/*
557 		 * 0x8000_0000: reset/NMI (initially in kseg1)
558 		 * 0x8000_0400: normal vectors
559 		 */
560 		new_ebase = 0x80000400;
561 		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
562 		break;
563 	case CPU_BMIPS5000:
564 		/*
565 		 * 0x8000_0000: reset/NMI (initially in kseg1)
566 		 * 0x8000_1000: normal vectors
567 		 */
568 		new_ebase = 0x80001000;
569 		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
570 		write_c0_ebase(new_ebase);
571 		break;
572 	default:
573 		return;
574 	}
575 
576 	board_nmi_handler_setup = &bmips_nmi_handler_setup;
577 	ebase = new_ebase;
578 }
579 
580 asmlinkage void __weak plat_wired_tlb_setup(void)
581 {
582 	/*
583 	 * Called when starting/restarting a secondary CPU.
584 	 * Kernel stacks and other important data might only be accessible
585 	 * once the wired entries are present.
586 	 */
587 }
588 
589 void bmips_cpu_setup(void)
590 {
591 	void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
592 	u32 __maybe_unused cfg;
593 
594 	switch (current_cpu_type()) {
595 	case CPU_BMIPS3300:
596 		/* Set BIU to async mode */
597 		set_c0_brcm_bus_pll(BIT(22));
598 		__sync();
599 
600 		/* put the BIU back in sync mode */
601 		clear_c0_brcm_bus_pll(BIT(22));
602 
603 		/* clear BHTD to enable branch history table */
604 		clear_c0_brcm_reset(BIT(16));
605 
606 		/* Flush and enable RAC */
607 		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
608 		__raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
609 		__raw_readl(cbr + BMIPS_RAC_CONFIG);
610 
611 		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
612 		__raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
613 		__raw_readl(cbr + BMIPS_RAC_CONFIG);
614 
615 		cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
616 		__raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
617 		__raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
618 		break;
619 
620 	case CPU_BMIPS4380:
621 		/* CBG workaround for early BMIPS4380 CPUs */
622 		switch (read_c0_prid()) {
623 		case 0x2a040:
624 		case 0x2a042:
625 		case 0x2a044:
626 		case 0x2a060:
627 			cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
628 			__raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
629 			__raw_readl(cbr + BMIPS_L2_CONFIG);
630 		}
631 
632 		/* clear BHTD to enable branch history table */
633 		clear_c0_brcm_config_0(BIT(21));
634 
635 		/* XI/ROTR enable */
636 		set_c0_brcm_config_0(BIT(23));
637 		set_c0_brcm_cmt_ctrl(BIT(15));
638 		break;
639 
640 	case CPU_BMIPS5000:
641 		/* enable RDHWR, BRDHWR */
642 		set_c0_brcm_config(BIT(17) | BIT(21));
643 
644 		/* Disable JTB */
645 		__asm__ __volatile__(
646 		"	.set	noreorder\n"
647 		"	li	$8, 0x5a455048\n"
648 		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
649 		"	.word	0x4008b008\n"	/* mfc0	t0, $22, 8 */
650 		"	li	$9, 0x00008000\n"
651 		"	or	$8, $8, $9\n"
652 		"	.word	0x4088b008\n"	/* mtc0	t0, $22, 8 */
653 		"	sync\n"
654 		"	li	$8, 0x0\n"
655 		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
656 		"	.set	reorder\n"
657 		: : : "$8", "$9");
658 
659 		/* XI enable */
660 		set_c0_brcm_config(BIT(27));
661 
662 		/* enable MIPS32R2 ROR instruction for XI TLB handlers */
663 		__asm__ __volatile__(
664 		"	li	$8, 0x5a455048\n"
665 		"	.word	0x4088b00f\n"	/* mtc0 $8, $22, 15 */
666 		"	nop; nop; nop\n"
667 		"	.word	0x4008b008\n"	/* mfc0 $8, $22, 8 */
668 		"	lui	$9, 0x0100\n"
669 		"	or	$8, $9\n"
670 		"	.word	0x4088b008\n"	/* mtc0 $8, $22, 8 */
671 		: : : "$8", "$9");
672 		break;
673 	}
674 }
675