1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1995 Linus Torvalds 7 * Copyright (C) 1995 Waldorf Electronics 8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle 9 * Copyright (C) 1996 Stoned Elipot 10 * Copyright (C) 1999 Silicon Graphics, Inc. 11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki 12 */ 13 #include <linux/init.h> 14 #include <linux/ioport.h> 15 #include <linux/export.h> 16 #include <linux/screen_info.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/initrd.h> 20 #include <linux/root_dev.h> 21 #include <linux/highmem.h> 22 #include <linux/console.h> 23 #include <linux/pfn.h> 24 #include <linux/debugfs.h> 25 #include <linux/kexec.h> 26 #include <linux/sizes.h> 27 28 #include <asm/addrspace.h> 29 #include <asm/bootinfo.h> 30 #include <asm/bugs.h> 31 #include <asm/cache.h> 32 #include <asm/cpu.h> 33 #include <asm/sections.h> 34 #include <asm/setup.h> 35 #include <asm/smp-ops.h> 36 #include <asm/prom.h> 37 38 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; 39 40 EXPORT_SYMBOL(cpu_data); 41 42 #ifdef CONFIG_VT 43 struct screen_info screen_info; 44 #endif 45 46 /* 47 * Despite it's name this variable is even if we don't have PCI 48 */ 49 unsigned int PCI_DMA_BUS_IS_PHYS; 50 51 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS); 52 53 /* 54 * Setup information 55 * 56 * These are initialized so they are in the .data section 57 */ 58 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; 59 60 EXPORT_SYMBOL(mips_machtype); 61 62 struct boot_mem_map boot_mem_map; 63 64 static char __initdata command_line[COMMAND_LINE_SIZE]; 65 char __initdata arcs_cmdline[COMMAND_LINE_SIZE]; 66 67 #ifdef CONFIG_CMDLINE_BOOL 68 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 69 #endif 70 71 /* 72 * mips_io_port_base is the begin of the address space to which x86 style 73 * I/O ports are mapped. 74 */ 75 const unsigned long mips_io_port_base = -1; 76 EXPORT_SYMBOL(mips_io_port_base); 77 78 static struct resource code_resource = { .name = "Kernel code", }; 79 static struct resource data_resource = { .name = "Kernel data", }; 80 81 static void *detect_magic __initdata = detect_memory_region; 82 83 void __init add_memory_region(phys_t start, phys_t size, long type) 84 { 85 int x = boot_mem_map.nr_map; 86 int i; 87 88 /* Sanity check */ 89 if (start + size < start) { 90 pr_warning("Trying to add an invalid memory region, skipped\n"); 91 return; 92 } 93 94 /* 95 * Try to merge with existing entry, if any. 96 */ 97 for (i = 0; i < boot_mem_map.nr_map; i++) { 98 struct boot_mem_map_entry *entry = boot_mem_map.map + i; 99 unsigned long top; 100 101 if (entry->type != type) 102 continue; 103 104 if (start + size < entry->addr) 105 continue; /* no overlap */ 106 107 if (entry->addr + entry->size < start) 108 continue; /* no overlap */ 109 110 top = max(entry->addr + entry->size, start + size); 111 entry->addr = min(entry->addr, start); 112 entry->size = top - entry->addr; 113 114 return; 115 } 116 117 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) { 118 pr_err("Ooops! Too many entries in the memory map!\n"); 119 return; 120 } 121 122 boot_mem_map.map[x].addr = start; 123 boot_mem_map.map[x].size = size; 124 boot_mem_map.map[x].type = type; 125 boot_mem_map.nr_map++; 126 } 127 128 void __init detect_memory_region(phys_t start, phys_t sz_min, phys_t sz_max) 129 { 130 void *dm = &detect_magic; 131 phys_t size; 132 133 for (size = sz_min; size < sz_max; size <<= 1) { 134 if (!memcmp(dm, dm + size, sizeof(detect_magic))) 135 break; 136 } 137 138 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n", 139 ((unsigned long long) size) / SZ_1M, 140 (unsigned long long) start, 141 ((unsigned long long) sz_min) / SZ_1M, 142 ((unsigned long long) sz_max) / SZ_1M); 143 144 add_memory_region(start, size, BOOT_MEM_RAM); 145 } 146 147 static void __init print_memory_map(void) 148 { 149 int i; 150 const int field = 2 * sizeof(unsigned long); 151 152 for (i = 0; i < boot_mem_map.nr_map; i++) { 153 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ", 154 field, (unsigned long long) boot_mem_map.map[i].size, 155 field, (unsigned long long) boot_mem_map.map[i].addr); 156 157 switch (boot_mem_map.map[i].type) { 158 case BOOT_MEM_RAM: 159 printk(KERN_CONT "(usable)\n"); 160 break; 161 case BOOT_MEM_INIT_RAM: 162 printk(KERN_CONT "(usable after init)\n"); 163 break; 164 case BOOT_MEM_ROM_DATA: 165 printk(KERN_CONT "(ROM data)\n"); 166 break; 167 case BOOT_MEM_RESERVED: 168 printk(KERN_CONT "(reserved)\n"); 169 break; 170 default: 171 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type); 172 break; 173 } 174 } 175 } 176 177 /* 178 * Manage initrd 179 */ 180 #ifdef CONFIG_BLK_DEV_INITRD 181 182 static int __init rd_start_early(char *p) 183 { 184 unsigned long start = memparse(p, &p); 185 186 #ifdef CONFIG_64BIT 187 /* Guess if the sign extension was forgotten by bootloader */ 188 if (start < XKPHYS) 189 start = (int)start; 190 #endif 191 initrd_start = start; 192 initrd_end += start; 193 return 0; 194 } 195 early_param("rd_start", rd_start_early); 196 197 static int __init rd_size_early(char *p) 198 { 199 initrd_end += memparse(p, &p); 200 return 0; 201 } 202 early_param("rd_size", rd_size_early); 203 204 /* it returns the next free pfn after initrd */ 205 static unsigned long __init init_initrd(void) 206 { 207 unsigned long end; 208 209 /* 210 * Board specific code or command line parser should have 211 * already set up initrd_start and initrd_end. In these cases 212 * perfom sanity checks and use them if all looks good. 213 */ 214 if (!initrd_start || initrd_end <= initrd_start) 215 goto disable; 216 217 if (initrd_start & ~PAGE_MASK) { 218 pr_err("initrd start must be page aligned\n"); 219 goto disable; 220 } 221 if (initrd_start < PAGE_OFFSET) { 222 pr_err("initrd start < PAGE_OFFSET\n"); 223 goto disable; 224 } 225 226 /* 227 * Sanitize initrd addresses. For example firmware 228 * can't guess if they need to pass them through 229 * 64-bits values if the kernel has been built in pure 230 * 32-bit. We need also to switch from KSEG0 to XKPHYS 231 * addresses now, so the code can now safely use __pa(). 232 */ 233 end = __pa(initrd_end); 234 initrd_end = (unsigned long)__va(end); 235 initrd_start = (unsigned long)__va(__pa(initrd_start)); 236 237 ROOT_DEV = Root_RAM0; 238 return PFN_UP(end); 239 disable: 240 initrd_start = 0; 241 initrd_end = 0; 242 return 0; 243 } 244 245 static void __init finalize_initrd(void) 246 { 247 unsigned long size = initrd_end - initrd_start; 248 249 if (size == 0) { 250 printk(KERN_INFO "Initrd not found or empty"); 251 goto disable; 252 } 253 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { 254 printk(KERN_ERR "Initrd extends beyond end of memory"); 255 goto disable; 256 } 257 258 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT); 259 initrd_below_start_ok = 1; 260 261 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", 262 initrd_start, size); 263 return; 264 disable: 265 printk(KERN_CONT " - disabling initrd\n"); 266 initrd_start = 0; 267 initrd_end = 0; 268 } 269 270 #else /* !CONFIG_BLK_DEV_INITRD */ 271 272 static unsigned long __init init_initrd(void) 273 { 274 return 0; 275 } 276 277 #define finalize_initrd() do {} while (0) 278 279 #endif 280 281 /* 282 * Initialize the bootmem allocator. It also setup initrd related data 283 * if needed. 284 */ 285 #ifdef CONFIG_SGI_IP27 286 287 static void __init bootmem_init(void) 288 { 289 init_initrd(); 290 finalize_initrd(); 291 } 292 293 #else /* !CONFIG_SGI_IP27 */ 294 295 static void __init bootmem_init(void) 296 { 297 unsigned long reserved_end; 298 unsigned long mapstart = ~0UL; 299 unsigned long bootmap_size; 300 int i; 301 302 /* 303 * Init any data related to initrd. It's a nop if INITRD is 304 * not selected. Once that done we can determine the low bound 305 * of usable memory. 306 */ 307 reserved_end = max(init_initrd(), 308 (unsigned long) PFN_UP(__pa_symbol(&_end))); 309 310 /* 311 * max_low_pfn is not a number of pages. The number of pages 312 * of the system is given by 'max_low_pfn - min_low_pfn'. 313 */ 314 min_low_pfn = ~0UL; 315 max_low_pfn = 0; 316 317 /* 318 * Find the highest page frame number we have available. 319 */ 320 for (i = 0; i < boot_mem_map.nr_map; i++) { 321 unsigned long start, end; 322 323 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) 324 continue; 325 326 start = PFN_UP(boot_mem_map.map[i].addr); 327 end = PFN_DOWN(boot_mem_map.map[i].addr 328 + boot_mem_map.map[i].size); 329 330 if (end > max_low_pfn) 331 max_low_pfn = end; 332 if (start < min_low_pfn) 333 min_low_pfn = start; 334 if (end <= reserved_end) 335 continue; 336 if (start >= mapstart) 337 continue; 338 mapstart = max(reserved_end, start); 339 } 340 341 if (min_low_pfn >= max_low_pfn) 342 panic("Incorrect memory mapping !!!"); 343 if (min_low_pfn > ARCH_PFN_OFFSET) { 344 pr_info("Wasting %lu bytes for tracking %lu unused pages\n", 345 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page), 346 min_low_pfn - ARCH_PFN_OFFSET); 347 } else if (min_low_pfn < ARCH_PFN_OFFSET) { 348 pr_info("%lu free pages won't be used\n", 349 ARCH_PFN_OFFSET - min_low_pfn); 350 } 351 min_low_pfn = ARCH_PFN_OFFSET; 352 353 /* 354 * Determine low and high memory ranges 355 */ 356 max_pfn = max_low_pfn; 357 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { 358 #ifdef CONFIG_HIGHMEM 359 highstart_pfn = PFN_DOWN(HIGHMEM_START); 360 highend_pfn = max_low_pfn; 361 #endif 362 max_low_pfn = PFN_DOWN(HIGHMEM_START); 363 } 364 365 /* 366 * Initialize the boot-time allocator with low memory only. 367 */ 368 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart, 369 min_low_pfn, max_low_pfn); 370 371 372 for (i = 0; i < boot_mem_map.nr_map; i++) { 373 unsigned long start, end; 374 375 start = PFN_UP(boot_mem_map.map[i].addr); 376 end = PFN_DOWN(boot_mem_map.map[i].addr 377 + boot_mem_map.map[i].size); 378 379 if (start <= min_low_pfn) 380 start = min_low_pfn; 381 if (start >= end) 382 continue; 383 384 #ifndef CONFIG_HIGHMEM 385 if (end > max_low_pfn) 386 end = max_low_pfn; 387 388 /* 389 * ... finally, is the area going away? 390 */ 391 if (end <= start) 392 continue; 393 #endif 394 395 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0); 396 } 397 398 /* 399 * Register fully available low RAM pages with the bootmem allocator. 400 */ 401 for (i = 0; i < boot_mem_map.nr_map; i++) { 402 unsigned long start, end, size; 403 404 start = PFN_UP(boot_mem_map.map[i].addr); 405 end = PFN_DOWN(boot_mem_map.map[i].addr 406 + boot_mem_map.map[i].size); 407 408 /* 409 * Reserve usable memory. 410 */ 411 switch (boot_mem_map.map[i].type) { 412 case BOOT_MEM_RAM: 413 break; 414 case BOOT_MEM_INIT_RAM: 415 memory_present(0, start, end); 416 continue; 417 default: 418 /* Not usable memory */ 419 continue; 420 } 421 422 /* 423 * We are rounding up the start address of usable memory 424 * and at the end of the usable range downwards. 425 */ 426 if (start >= max_low_pfn) 427 continue; 428 if (start < reserved_end) 429 start = reserved_end; 430 if (end > max_low_pfn) 431 end = max_low_pfn; 432 433 /* 434 * ... finally, is the area going away? 435 */ 436 if (end <= start) 437 continue; 438 size = end - start; 439 440 /* Register lowmem ranges */ 441 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT); 442 memory_present(0, start, end); 443 } 444 445 /* 446 * Reserve the bootmap memory. 447 */ 448 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT); 449 450 /* 451 * Reserve initrd memory if needed. 452 */ 453 finalize_initrd(); 454 } 455 456 #endif /* CONFIG_SGI_IP27 */ 457 458 /* 459 * arch_mem_init - initialize memory management subsystem 460 * 461 * o plat_mem_setup() detects the memory configuration and will record detected 462 * memory areas using add_memory_region. 463 * 464 * At this stage the memory configuration of the system is known to the 465 * kernel but generic memory management system is still entirely uninitialized. 466 * 467 * o bootmem_init() 468 * o sparse_init() 469 * o paging_init() 470 * 471 * At this stage the bootmem allocator is ready to use. 472 * 473 * NOTE: historically plat_mem_setup did the entire platform initialization. 474 * This was rather impractical because it meant plat_mem_setup had to 475 * get away without any kind of memory allocator. To keep old code from 476 * breaking plat_setup was just renamed to plat_setup and a second platform 477 * initialization hook for anything else was introduced. 478 */ 479 480 static int usermem __initdata; 481 482 static int __init early_parse_mem(char *p) 483 { 484 unsigned long start, size; 485 486 /* 487 * If a user specifies memory size, we 488 * blow away any automatically generated 489 * size. 490 */ 491 if (usermem == 0) { 492 boot_mem_map.nr_map = 0; 493 usermem = 1; 494 } 495 start = 0; 496 size = memparse(p, &p); 497 if (*p == '@') 498 start = memparse(p + 1, &p); 499 500 add_memory_region(start, size, BOOT_MEM_RAM); 501 return 0; 502 } 503 early_param("mem", early_parse_mem); 504 505 #ifdef CONFIG_PROC_VMCORE 506 unsigned long setup_elfcorehdr, setup_elfcorehdr_size; 507 static int __init early_parse_elfcorehdr(char *p) 508 { 509 int i; 510 511 setup_elfcorehdr = memparse(p, &p); 512 513 for (i = 0; i < boot_mem_map.nr_map; i++) { 514 unsigned long start = boot_mem_map.map[i].addr; 515 unsigned long end = (boot_mem_map.map[i].addr + 516 boot_mem_map.map[i].size); 517 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) { 518 /* 519 * Reserve from the elf core header to the end of 520 * the memory segment, that should all be kdump 521 * reserved memory. 522 */ 523 setup_elfcorehdr_size = end - setup_elfcorehdr; 524 break; 525 } 526 } 527 /* 528 * If we don't find it in the memory map, then we shouldn't 529 * have to worry about it, as the new kernel won't use it. 530 */ 531 return 0; 532 } 533 early_param("elfcorehdr", early_parse_elfcorehdr); 534 #endif 535 536 static void __init arch_mem_addpart(phys_t mem, phys_t end, int type) 537 { 538 phys_t size; 539 int i; 540 541 size = end - mem; 542 if (!size) 543 return; 544 545 /* Make sure it is in the boot_mem_map */ 546 for (i = 0; i < boot_mem_map.nr_map; i++) { 547 if (mem >= boot_mem_map.map[i].addr && 548 mem < (boot_mem_map.map[i].addr + 549 boot_mem_map.map[i].size)) 550 return; 551 } 552 add_memory_region(mem, size, type); 553 } 554 555 #ifdef CONFIG_KEXEC 556 static inline unsigned long long get_total_mem(void) 557 { 558 unsigned long long total; 559 560 total = max_pfn - min_low_pfn; 561 return total << PAGE_SHIFT; 562 } 563 564 static void __init mips_parse_crashkernel(void) 565 { 566 unsigned long long total_mem; 567 unsigned long long crash_size, crash_base; 568 int ret; 569 570 total_mem = get_total_mem(); 571 ret = parse_crashkernel(boot_command_line, total_mem, 572 &crash_size, &crash_base); 573 if (ret != 0 || crash_size <= 0) 574 return; 575 576 crashk_res.start = crash_base; 577 crashk_res.end = crash_base + crash_size - 1; 578 } 579 580 static void __init request_crashkernel(struct resource *res) 581 { 582 int ret; 583 584 ret = request_resource(res, &crashk_res); 585 if (!ret) 586 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n", 587 (unsigned long)((crashk_res.end - 588 crashk_res.start + 1) >> 20), 589 (unsigned long)(crashk_res.start >> 20)); 590 } 591 #else /* !defined(CONFIG_KEXEC) */ 592 static void __init mips_parse_crashkernel(void) 593 { 594 } 595 596 static void __init request_crashkernel(struct resource *res) 597 { 598 } 599 #endif /* !defined(CONFIG_KEXEC) */ 600 601 static void __init arch_mem_init(char **cmdline_p) 602 { 603 extern void plat_mem_setup(void); 604 605 /* call board setup routine */ 606 plat_mem_setup(); 607 608 /* 609 * Make sure all kernel memory is in the maps. The "UP" and 610 * "DOWN" are opposite for initdata since if it crosses over 611 * into another memory section you don't want that to be 612 * freed when the initdata is freed. 613 */ 614 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT, 615 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT, 616 BOOT_MEM_RAM); 617 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT, 618 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT, 619 BOOT_MEM_INIT_RAM); 620 621 pr_info("Determined physical RAM map:\n"); 622 print_memory_map(); 623 624 #ifdef CONFIG_CMDLINE_BOOL 625 #ifdef CONFIG_CMDLINE_OVERRIDE 626 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 627 #else 628 if (builtin_cmdline[0]) { 629 strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE); 630 strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE); 631 } 632 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 633 #endif 634 #else 635 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 636 #endif 637 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 638 639 *cmdline_p = command_line; 640 641 parse_early_param(); 642 643 if (usermem) { 644 pr_info("User-defined physical RAM map:\n"); 645 print_memory_map(); 646 } 647 648 bootmem_init(); 649 #ifdef CONFIG_PROC_VMCORE 650 if (setup_elfcorehdr && setup_elfcorehdr_size) { 651 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n", 652 setup_elfcorehdr, setup_elfcorehdr_size); 653 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size, 654 BOOTMEM_DEFAULT); 655 } 656 #endif 657 658 mips_parse_crashkernel(); 659 #ifdef CONFIG_KEXEC 660 if (crashk_res.start != crashk_res.end) 661 reserve_bootmem(crashk_res.start, 662 crashk_res.end - crashk_res.start + 1, 663 BOOTMEM_DEFAULT); 664 #endif 665 device_tree_init(); 666 sparse_init(); 667 plat_swiotlb_setup(); 668 paging_init(); 669 } 670 671 static void __init resource_init(void) 672 { 673 int i; 674 675 if (UNCAC_BASE != IO_BASE) 676 return; 677 678 code_resource.start = __pa_symbol(&_text); 679 code_resource.end = __pa_symbol(&_etext) - 1; 680 data_resource.start = __pa_symbol(&_etext); 681 data_resource.end = __pa_symbol(&_edata) - 1; 682 683 for (i = 0; i < boot_mem_map.nr_map; i++) { 684 struct resource *res; 685 unsigned long start, end; 686 687 start = boot_mem_map.map[i].addr; 688 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; 689 if (start >= HIGHMEM_START) 690 continue; 691 if (end >= HIGHMEM_START) 692 end = HIGHMEM_START - 1; 693 694 res = alloc_bootmem(sizeof(struct resource)); 695 switch (boot_mem_map.map[i].type) { 696 case BOOT_MEM_RAM: 697 case BOOT_MEM_INIT_RAM: 698 case BOOT_MEM_ROM_DATA: 699 res->name = "System RAM"; 700 break; 701 case BOOT_MEM_RESERVED: 702 default: 703 res->name = "reserved"; 704 } 705 706 res->start = start; 707 res->end = end; 708 709 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 710 request_resource(&iomem_resource, res); 711 712 /* 713 * We don't know which RAM region contains kernel data, 714 * so we try it repeatedly and let the resource manager 715 * test it. 716 */ 717 request_resource(res, &code_resource); 718 request_resource(res, &data_resource); 719 request_crashkernel(res); 720 } 721 } 722 723 void __init setup_arch(char **cmdline_p) 724 { 725 cpu_probe(); 726 prom_init(); 727 728 #ifdef CONFIG_EARLY_PRINTK 729 setup_early_printk(); 730 #endif 731 cpu_report(); 732 check_bugs_early(); 733 734 #if defined(CONFIG_VT) 735 #if defined(CONFIG_VGA_CONSOLE) 736 conswitchp = &vga_con; 737 #elif defined(CONFIG_DUMMY_CONSOLE) 738 conswitchp = &dummy_con; 739 #endif 740 #endif 741 742 arch_mem_init(cmdline_p); 743 744 resource_init(); 745 plat_smp_setup(); 746 747 cpu_cache_init(); 748 } 749 750 unsigned long kernelsp[NR_CPUS]; 751 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; 752 753 #ifdef CONFIG_DEBUG_FS 754 struct dentry *mips_debugfs_dir; 755 static int __init debugfs_mips(void) 756 { 757 struct dentry *d; 758 759 d = debugfs_create_dir("mips", NULL); 760 if (!d) 761 return -ENOMEM; 762 mips_debugfs_dir = d; 763 return 0; 764 } 765 arch_initcall(debugfs_mips); 766 #endif 767