1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1995 Linus Torvalds 7 * Copyright (C) 1995 Waldorf Electronics 8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle 9 * Copyright (C) 1996 Stoned Elipot 10 * Copyright (C) 1999 Silicon Graphics, Inc. 11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki 12 */ 13 #include <linux/init.h> 14 #include <linux/ioport.h> 15 #include <linux/export.h> 16 #include <linux/screen_info.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/initrd.h> 20 #include <linux/root_dev.h> 21 #include <linux/highmem.h> 22 #include <linux/console.h> 23 #include <linux/pfn.h> 24 #include <linux/debugfs.h> 25 #include <linux/kexec.h> 26 #include <linux/sizes.h> 27 #include <linux/device.h> 28 #include <linux/dma-contiguous.h> 29 #include <linux/decompress/generic.h> 30 31 #include <asm/addrspace.h> 32 #include <asm/bootinfo.h> 33 #include <asm/bugs.h> 34 #include <asm/cache.h> 35 #include <asm/cdmm.h> 36 #include <asm/cpu.h> 37 #include <asm/debug.h> 38 #include <asm/sections.h> 39 #include <asm/setup.h> 40 #include <asm/smp-ops.h> 41 #include <asm/prom.h> 42 43 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB 44 const char __section(.appended_dtb) __appended_dtb[0x100000]; 45 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */ 46 47 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; 48 49 EXPORT_SYMBOL(cpu_data); 50 51 #ifdef CONFIG_VT 52 struct screen_info screen_info; 53 #endif 54 55 /* 56 * Setup information 57 * 58 * These are initialized so they are in the .data section 59 */ 60 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; 61 62 EXPORT_SYMBOL(mips_machtype); 63 64 struct boot_mem_map boot_mem_map; 65 66 static char __initdata command_line[COMMAND_LINE_SIZE]; 67 char __initdata arcs_cmdline[COMMAND_LINE_SIZE]; 68 69 #ifdef CONFIG_CMDLINE_BOOL 70 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 71 #endif 72 73 /* 74 * mips_io_port_base is the begin of the address space to which x86 style 75 * I/O ports are mapped. 76 */ 77 const unsigned long mips_io_port_base = -1; 78 EXPORT_SYMBOL(mips_io_port_base); 79 80 static struct resource code_resource = { .name = "Kernel code", }; 81 static struct resource data_resource = { .name = "Kernel data", }; 82 83 static void *detect_magic __initdata = detect_memory_region; 84 85 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type) 86 { 87 int x = boot_mem_map.nr_map; 88 int i; 89 90 /* Sanity check */ 91 if (start + size < start) { 92 pr_warn("Trying to add an invalid memory region, skipped\n"); 93 return; 94 } 95 96 /* 97 * Try to merge with existing entry, if any. 98 */ 99 for (i = 0; i < boot_mem_map.nr_map; i++) { 100 struct boot_mem_map_entry *entry = boot_mem_map.map + i; 101 unsigned long top; 102 103 if (entry->type != type) 104 continue; 105 106 if (start + size < entry->addr) 107 continue; /* no overlap */ 108 109 if (entry->addr + entry->size < start) 110 continue; /* no overlap */ 111 112 top = max(entry->addr + entry->size, start + size); 113 entry->addr = min(entry->addr, start); 114 entry->size = top - entry->addr; 115 116 return; 117 } 118 119 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) { 120 pr_err("Ooops! Too many entries in the memory map!\n"); 121 return; 122 } 123 124 boot_mem_map.map[x].addr = start; 125 boot_mem_map.map[x].size = size; 126 boot_mem_map.map[x].type = type; 127 boot_mem_map.nr_map++; 128 } 129 130 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max) 131 { 132 void *dm = &detect_magic; 133 phys_addr_t size; 134 135 for (size = sz_min; size < sz_max; size <<= 1) { 136 if (!memcmp(dm, dm + size, sizeof(detect_magic))) 137 break; 138 } 139 140 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n", 141 ((unsigned long long) size) / SZ_1M, 142 (unsigned long long) start, 143 ((unsigned long long) sz_min) / SZ_1M, 144 ((unsigned long long) sz_max) / SZ_1M); 145 146 add_memory_region(start, size, BOOT_MEM_RAM); 147 } 148 149 static void __init print_memory_map(void) 150 { 151 int i; 152 const int field = 2 * sizeof(unsigned long); 153 154 for (i = 0; i < boot_mem_map.nr_map; i++) { 155 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ", 156 field, (unsigned long long) boot_mem_map.map[i].size, 157 field, (unsigned long long) boot_mem_map.map[i].addr); 158 159 switch (boot_mem_map.map[i].type) { 160 case BOOT_MEM_RAM: 161 printk(KERN_CONT "(usable)\n"); 162 break; 163 case BOOT_MEM_INIT_RAM: 164 printk(KERN_CONT "(usable after init)\n"); 165 break; 166 case BOOT_MEM_ROM_DATA: 167 printk(KERN_CONT "(ROM data)\n"); 168 break; 169 case BOOT_MEM_RESERVED: 170 printk(KERN_CONT "(reserved)\n"); 171 break; 172 default: 173 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type); 174 break; 175 } 176 } 177 } 178 179 /* 180 * Manage initrd 181 */ 182 #ifdef CONFIG_BLK_DEV_INITRD 183 184 static int __init rd_start_early(char *p) 185 { 186 unsigned long start = memparse(p, &p); 187 188 #ifdef CONFIG_64BIT 189 /* Guess if the sign extension was forgotten by bootloader */ 190 if (start < XKPHYS) 191 start = (int)start; 192 #endif 193 initrd_start = start; 194 initrd_end += start; 195 return 0; 196 } 197 early_param("rd_start", rd_start_early); 198 199 static int __init rd_size_early(char *p) 200 { 201 initrd_end += memparse(p, &p); 202 return 0; 203 } 204 early_param("rd_size", rd_size_early); 205 206 /* it returns the next free pfn after initrd */ 207 static unsigned long __init init_initrd(void) 208 { 209 unsigned long end; 210 211 /* 212 * Board specific code or command line parser should have 213 * already set up initrd_start and initrd_end. In these cases 214 * perfom sanity checks and use them if all looks good. 215 */ 216 if (!initrd_start || initrd_end <= initrd_start) 217 goto disable; 218 219 if (initrd_start & ~PAGE_MASK) { 220 pr_err("initrd start must be page aligned\n"); 221 goto disable; 222 } 223 if (initrd_start < PAGE_OFFSET) { 224 pr_err("initrd start < PAGE_OFFSET\n"); 225 goto disable; 226 } 227 228 /* 229 * Sanitize initrd addresses. For example firmware 230 * can't guess if they need to pass them through 231 * 64-bits values if the kernel has been built in pure 232 * 32-bit. We need also to switch from KSEG0 to XKPHYS 233 * addresses now, so the code can now safely use __pa(). 234 */ 235 end = __pa(initrd_end); 236 initrd_end = (unsigned long)__va(end); 237 initrd_start = (unsigned long)__va(__pa(initrd_start)); 238 239 ROOT_DEV = Root_RAM0; 240 return PFN_UP(end); 241 disable: 242 initrd_start = 0; 243 initrd_end = 0; 244 return 0; 245 } 246 247 /* In some conditions (e.g. big endian bootloader with a little endian 248 kernel), the initrd might appear byte swapped. Try to detect this and 249 byte swap it if needed. */ 250 static void __init maybe_bswap_initrd(void) 251 { 252 #if defined(CONFIG_CPU_CAVIUM_OCTEON) 253 u64 buf; 254 255 /* Check for CPIO signature */ 256 if (!memcmp((void *)initrd_start, "070701", 6)) 257 return; 258 259 /* Check for compressed initrd */ 260 if (decompress_method((unsigned char *)initrd_start, 8, NULL)) 261 return; 262 263 /* Try again with a byte swapped header */ 264 buf = swab64p((u64 *)initrd_start); 265 if (!memcmp(&buf, "070701", 6) || 266 decompress_method((unsigned char *)(&buf), 8, NULL)) { 267 unsigned long i; 268 269 pr_info("Byteswapped initrd detected\n"); 270 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8) 271 swab64s((u64 *)i); 272 } 273 #endif 274 } 275 276 static void __init finalize_initrd(void) 277 { 278 unsigned long size = initrd_end - initrd_start; 279 280 if (size == 0) { 281 printk(KERN_INFO "Initrd not found or empty"); 282 goto disable; 283 } 284 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { 285 printk(KERN_ERR "Initrd extends beyond end of memory"); 286 goto disable; 287 } 288 289 maybe_bswap_initrd(); 290 291 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT); 292 initrd_below_start_ok = 1; 293 294 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", 295 initrd_start, size); 296 return; 297 disable: 298 printk(KERN_CONT " - disabling initrd\n"); 299 initrd_start = 0; 300 initrd_end = 0; 301 } 302 303 #else /* !CONFIG_BLK_DEV_INITRD */ 304 305 static unsigned long __init init_initrd(void) 306 { 307 return 0; 308 } 309 310 #define finalize_initrd() do {} while (0) 311 312 #endif 313 314 /* 315 * Initialize the bootmem allocator. It also setup initrd related data 316 * if needed. 317 */ 318 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA)) 319 320 static void __init bootmem_init(void) 321 { 322 init_initrd(); 323 finalize_initrd(); 324 } 325 326 #else /* !CONFIG_SGI_IP27 */ 327 328 static void __init bootmem_init(void) 329 { 330 unsigned long reserved_end; 331 unsigned long mapstart = ~0UL; 332 unsigned long bootmap_size; 333 int i; 334 335 /* 336 * Sanity check any INITRD first. We don't take it into account 337 * for bootmem setup initially, rely on the end-of-kernel-code 338 * as our memory range starting point. Once bootmem is inited we 339 * will reserve the area used for the initrd. 340 */ 341 init_initrd(); 342 reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end)); 343 344 /* 345 * max_low_pfn is not a number of pages. The number of pages 346 * of the system is given by 'max_low_pfn - min_low_pfn'. 347 */ 348 min_low_pfn = ~0UL; 349 max_low_pfn = 0; 350 351 /* 352 * Find the highest page frame number we have available. 353 */ 354 for (i = 0; i < boot_mem_map.nr_map; i++) { 355 unsigned long start, end; 356 357 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) 358 continue; 359 360 start = PFN_UP(boot_mem_map.map[i].addr); 361 end = PFN_DOWN(boot_mem_map.map[i].addr 362 + boot_mem_map.map[i].size); 363 364 if (end > max_low_pfn) 365 max_low_pfn = end; 366 if (start < min_low_pfn) 367 min_low_pfn = start; 368 if (end <= reserved_end) 369 continue; 370 #ifdef CONFIG_BLK_DEV_INITRD 371 /* Skip zones before initrd and initrd itself */ 372 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end))) 373 continue; 374 #endif 375 if (start >= mapstart) 376 continue; 377 mapstart = max(reserved_end, start); 378 } 379 380 if (min_low_pfn >= max_low_pfn) 381 panic("Incorrect memory mapping !!!"); 382 if (min_low_pfn > ARCH_PFN_OFFSET) { 383 pr_info("Wasting %lu bytes for tracking %lu unused pages\n", 384 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page), 385 min_low_pfn - ARCH_PFN_OFFSET); 386 } else if (min_low_pfn < ARCH_PFN_OFFSET) { 387 pr_info("%lu free pages won't be used\n", 388 ARCH_PFN_OFFSET - min_low_pfn); 389 } 390 min_low_pfn = ARCH_PFN_OFFSET; 391 392 /* 393 * Determine low and high memory ranges 394 */ 395 max_pfn = max_low_pfn; 396 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { 397 #ifdef CONFIG_HIGHMEM 398 highstart_pfn = PFN_DOWN(HIGHMEM_START); 399 highend_pfn = max_low_pfn; 400 #endif 401 max_low_pfn = PFN_DOWN(HIGHMEM_START); 402 } 403 404 #ifdef CONFIG_BLK_DEV_INITRD 405 /* 406 * mapstart should be after initrd_end 407 */ 408 if (initrd_end) 409 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end))); 410 #endif 411 412 /* 413 * Initialize the boot-time allocator with low memory only. 414 */ 415 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart, 416 min_low_pfn, max_low_pfn); 417 418 419 for (i = 0; i < boot_mem_map.nr_map; i++) { 420 unsigned long start, end; 421 422 start = PFN_UP(boot_mem_map.map[i].addr); 423 end = PFN_DOWN(boot_mem_map.map[i].addr 424 + boot_mem_map.map[i].size); 425 426 if (start <= min_low_pfn) 427 start = min_low_pfn; 428 if (start >= end) 429 continue; 430 431 #ifndef CONFIG_HIGHMEM 432 if (end > max_low_pfn) 433 end = max_low_pfn; 434 435 /* 436 * ... finally, is the area going away? 437 */ 438 if (end <= start) 439 continue; 440 #endif 441 442 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0); 443 } 444 445 /* 446 * Register fully available low RAM pages with the bootmem allocator. 447 */ 448 for (i = 0; i < boot_mem_map.nr_map; i++) { 449 unsigned long start, end, size; 450 451 start = PFN_UP(boot_mem_map.map[i].addr); 452 end = PFN_DOWN(boot_mem_map.map[i].addr 453 + boot_mem_map.map[i].size); 454 455 /* 456 * Reserve usable memory. 457 */ 458 switch (boot_mem_map.map[i].type) { 459 case BOOT_MEM_RAM: 460 break; 461 case BOOT_MEM_INIT_RAM: 462 memory_present(0, start, end); 463 continue; 464 default: 465 /* Not usable memory */ 466 continue; 467 } 468 469 /* 470 * We are rounding up the start address of usable memory 471 * and at the end of the usable range downwards. 472 */ 473 if (start >= max_low_pfn) 474 continue; 475 if (start < reserved_end) 476 start = reserved_end; 477 if (end > max_low_pfn) 478 end = max_low_pfn; 479 480 /* 481 * ... finally, is the area going away? 482 */ 483 if (end <= start) 484 continue; 485 size = end - start; 486 487 /* Register lowmem ranges */ 488 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT); 489 memory_present(0, start, end); 490 } 491 492 /* 493 * Reserve the bootmap memory. 494 */ 495 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT); 496 497 #ifdef CONFIG_RELOCATABLE 498 /* 499 * The kernel reserves all memory below its _end symbol as bootmem, 500 * but the kernel may now be at a much higher address. The memory 501 * between the original and new locations may be returned to the system. 502 */ 503 if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) { 504 unsigned long offset; 505 extern void show_kernel_relocation(const char *level); 506 507 offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS); 508 free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset); 509 510 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO) 511 /* 512 * This information is necessary when debugging the kernel 513 * But is a security vulnerability otherwise! 514 */ 515 show_kernel_relocation(KERN_INFO); 516 #endif 517 } 518 #endif 519 520 /* 521 * Reserve initrd memory if needed. 522 */ 523 finalize_initrd(); 524 } 525 526 #endif /* CONFIG_SGI_IP27 */ 527 528 /* 529 * arch_mem_init - initialize memory management subsystem 530 * 531 * o plat_mem_setup() detects the memory configuration and will record detected 532 * memory areas using add_memory_region. 533 * 534 * At this stage the memory configuration of the system is known to the 535 * kernel but generic memory management system is still entirely uninitialized. 536 * 537 * o bootmem_init() 538 * o sparse_init() 539 * o paging_init() 540 * o dma_contiguous_reserve() 541 * 542 * At this stage the bootmem allocator is ready to use. 543 * 544 * NOTE: historically plat_mem_setup did the entire platform initialization. 545 * This was rather impractical because it meant plat_mem_setup had to 546 * get away without any kind of memory allocator. To keep old code from 547 * breaking plat_setup was just renamed to plat_mem_setup and a second platform 548 * initialization hook for anything else was introduced. 549 */ 550 551 static int usermem __initdata; 552 553 static int __init early_parse_mem(char *p) 554 { 555 phys_addr_t start, size; 556 557 /* 558 * If a user specifies memory size, we 559 * blow away any automatically generated 560 * size. 561 */ 562 if (usermem == 0) { 563 boot_mem_map.nr_map = 0; 564 usermem = 1; 565 } 566 start = 0; 567 size = memparse(p, &p); 568 if (*p == '@') 569 start = memparse(p + 1, &p); 570 571 add_memory_region(start, size, BOOT_MEM_RAM); 572 return 0; 573 } 574 early_param("mem", early_parse_mem); 575 576 #ifdef CONFIG_PROC_VMCORE 577 unsigned long setup_elfcorehdr, setup_elfcorehdr_size; 578 static int __init early_parse_elfcorehdr(char *p) 579 { 580 int i; 581 582 setup_elfcorehdr = memparse(p, &p); 583 584 for (i = 0; i < boot_mem_map.nr_map; i++) { 585 unsigned long start = boot_mem_map.map[i].addr; 586 unsigned long end = (boot_mem_map.map[i].addr + 587 boot_mem_map.map[i].size); 588 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) { 589 /* 590 * Reserve from the elf core header to the end of 591 * the memory segment, that should all be kdump 592 * reserved memory. 593 */ 594 setup_elfcorehdr_size = end - setup_elfcorehdr; 595 break; 596 } 597 } 598 /* 599 * If we don't find it in the memory map, then we shouldn't 600 * have to worry about it, as the new kernel won't use it. 601 */ 602 return 0; 603 } 604 early_param("elfcorehdr", early_parse_elfcorehdr); 605 #endif 606 607 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type) 608 { 609 phys_addr_t size; 610 int i; 611 612 size = end - mem; 613 if (!size) 614 return; 615 616 /* Make sure it is in the boot_mem_map */ 617 for (i = 0; i < boot_mem_map.nr_map; i++) { 618 if (mem >= boot_mem_map.map[i].addr && 619 mem < (boot_mem_map.map[i].addr + 620 boot_mem_map.map[i].size)) 621 return; 622 } 623 add_memory_region(mem, size, type); 624 } 625 626 #ifdef CONFIG_KEXEC 627 static inline unsigned long long get_total_mem(void) 628 { 629 unsigned long long total; 630 631 total = max_pfn - min_low_pfn; 632 return total << PAGE_SHIFT; 633 } 634 635 static void __init mips_parse_crashkernel(void) 636 { 637 unsigned long long total_mem; 638 unsigned long long crash_size, crash_base; 639 int ret; 640 641 total_mem = get_total_mem(); 642 ret = parse_crashkernel(boot_command_line, total_mem, 643 &crash_size, &crash_base); 644 if (ret != 0 || crash_size <= 0) 645 return; 646 647 crashk_res.start = crash_base; 648 crashk_res.end = crash_base + crash_size - 1; 649 } 650 651 static void __init request_crashkernel(struct resource *res) 652 { 653 int ret; 654 655 ret = request_resource(res, &crashk_res); 656 if (!ret) 657 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n", 658 (unsigned long)((crashk_res.end - 659 crashk_res.start + 1) >> 20), 660 (unsigned long)(crashk_res.start >> 20)); 661 } 662 #else /* !defined(CONFIG_KEXEC) */ 663 static void __init mips_parse_crashkernel(void) 664 { 665 } 666 667 static void __init request_crashkernel(struct resource *res) 668 { 669 } 670 #endif /* !defined(CONFIG_KEXEC) */ 671 672 #define USE_PROM_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER) 673 #define USE_DTB_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB) 674 #define EXTEND_WITH_PROM IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND) 675 #define BUILTIN_EXTEND_WITH_PROM \ 676 IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND) 677 678 static void __init arch_mem_init(char **cmdline_p) 679 { 680 struct memblock_region *reg; 681 extern void plat_mem_setup(void); 682 683 /* call board setup routine */ 684 plat_mem_setup(); 685 686 /* 687 * Make sure all kernel memory is in the maps. The "UP" and 688 * "DOWN" are opposite for initdata since if it crosses over 689 * into another memory section you don't want that to be 690 * freed when the initdata is freed. 691 */ 692 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT, 693 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT, 694 BOOT_MEM_RAM); 695 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT, 696 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT, 697 BOOT_MEM_INIT_RAM); 698 699 pr_info("Determined physical RAM map:\n"); 700 print_memory_map(); 701 702 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE) 703 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 704 #else 705 if ((USE_PROM_CMDLINE && arcs_cmdline[0]) || 706 (USE_DTB_CMDLINE && !boot_command_line[0])) 707 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 708 709 if (EXTEND_WITH_PROM && arcs_cmdline[0]) { 710 if (boot_command_line[0]) 711 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); 712 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 713 } 714 715 #if defined(CONFIG_CMDLINE_BOOL) 716 if (builtin_cmdline[0]) { 717 if (boot_command_line[0]) 718 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); 719 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 720 } 721 722 if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) { 723 if (boot_command_line[0]) 724 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); 725 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 726 } 727 #endif 728 #endif 729 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 730 731 *cmdline_p = command_line; 732 733 parse_early_param(); 734 735 if (usermem) { 736 pr_info("User-defined physical RAM map:\n"); 737 print_memory_map(); 738 } 739 740 bootmem_init(); 741 #ifdef CONFIG_PROC_VMCORE 742 if (setup_elfcorehdr && setup_elfcorehdr_size) { 743 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n", 744 setup_elfcorehdr, setup_elfcorehdr_size); 745 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size, 746 BOOTMEM_DEFAULT); 747 } 748 #endif 749 750 mips_parse_crashkernel(); 751 #ifdef CONFIG_KEXEC 752 if (crashk_res.start != crashk_res.end) 753 reserve_bootmem(crashk_res.start, 754 crashk_res.end - crashk_res.start + 1, 755 BOOTMEM_DEFAULT); 756 #endif 757 device_tree_init(); 758 sparse_init(); 759 plat_swiotlb_setup(); 760 paging_init(); 761 762 dma_contiguous_reserve(PFN_PHYS(max_low_pfn)); 763 /* Tell bootmem about cma reserved memblock section */ 764 for_each_memblock(reserved, reg) 765 if (reg->size != 0) 766 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT); 767 768 reserve_bootmem_region(__pa_symbol(&__nosave_begin), 769 __pa_symbol(&__nosave_end)); /* Reserve for hibernation */ 770 } 771 772 static void __init resource_init(void) 773 { 774 int i; 775 776 if (UNCAC_BASE != IO_BASE) 777 return; 778 779 code_resource.start = __pa_symbol(&_text); 780 code_resource.end = __pa_symbol(&_etext) - 1; 781 data_resource.start = __pa_symbol(&_etext); 782 data_resource.end = __pa_symbol(&_edata) - 1; 783 784 for (i = 0; i < boot_mem_map.nr_map; i++) { 785 struct resource *res; 786 unsigned long start, end; 787 788 start = boot_mem_map.map[i].addr; 789 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; 790 if (start >= HIGHMEM_START) 791 continue; 792 if (end >= HIGHMEM_START) 793 end = HIGHMEM_START - 1; 794 795 res = alloc_bootmem(sizeof(struct resource)); 796 797 res->start = start; 798 res->end = end; 799 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 800 801 switch (boot_mem_map.map[i].type) { 802 case BOOT_MEM_RAM: 803 case BOOT_MEM_INIT_RAM: 804 case BOOT_MEM_ROM_DATA: 805 res->name = "System RAM"; 806 res->flags |= IORESOURCE_SYSRAM; 807 break; 808 case BOOT_MEM_RESERVED: 809 default: 810 res->name = "reserved"; 811 } 812 813 request_resource(&iomem_resource, res); 814 815 /* 816 * We don't know which RAM region contains kernel data, 817 * so we try it repeatedly and let the resource manager 818 * test it. 819 */ 820 request_resource(res, &code_resource); 821 request_resource(res, &data_resource); 822 request_crashkernel(res); 823 } 824 } 825 826 #ifdef CONFIG_SMP 827 static void __init prefill_possible_map(void) 828 { 829 int i, possible = num_possible_cpus(); 830 831 if (possible > nr_cpu_ids) 832 possible = nr_cpu_ids; 833 834 for (i = 0; i < possible; i++) 835 set_cpu_possible(i, true); 836 for (; i < NR_CPUS; i++) 837 set_cpu_possible(i, false); 838 839 nr_cpu_ids = possible; 840 } 841 #else 842 static inline void prefill_possible_map(void) {} 843 #endif 844 845 void __init setup_arch(char **cmdline_p) 846 { 847 cpu_probe(); 848 mips_cm_probe(); 849 prom_init(); 850 851 setup_early_fdc_console(); 852 #ifdef CONFIG_EARLY_PRINTK 853 setup_early_printk(); 854 #endif 855 cpu_report(); 856 check_bugs_early(); 857 858 #if defined(CONFIG_VT) 859 #if defined(CONFIG_VGA_CONSOLE) 860 conswitchp = &vga_con; 861 #elif defined(CONFIG_DUMMY_CONSOLE) 862 conswitchp = &dummy_con; 863 #endif 864 #endif 865 866 arch_mem_init(cmdline_p); 867 868 resource_init(); 869 plat_smp_setup(); 870 prefill_possible_map(); 871 872 cpu_cache_init(); 873 } 874 875 unsigned long kernelsp[NR_CPUS]; 876 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; 877 878 #ifdef CONFIG_USE_OF 879 unsigned long fw_passed_dtb; 880 #endif 881 882 #ifdef CONFIG_DEBUG_FS 883 struct dentry *mips_debugfs_dir; 884 static int __init debugfs_mips(void) 885 { 886 struct dentry *d; 887 888 d = debugfs_create_dir("mips", NULL); 889 if (!d) 890 return -ENOMEM; 891 mips_debugfs_dir = d; 892 return 0; 893 } 894 arch_initcall(debugfs_mips); 895 #endif 896