1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1995 Linus Torvalds 7 * Copyright (C) 1995 Waldorf Electronics 8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle 9 * Copyright (C) 1996 Stoned Elipot 10 * Copyright (C) 1999 Silicon Graphics, Inc. 11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki 12 */ 13 #include <linux/init.h> 14 #include <linux/ioport.h> 15 #include <linux/module.h> 16 #include <linux/screen_info.h> 17 #include <linux/bootmem.h> 18 #include <linux/initrd.h> 19 #include <linux/root_dev.h> 20 #include <linux/highmem.h> 21 #include <linux/console.h> 22 #include <linux/pfn.h> 23 #include <linux/debugfs.h> 24 25 #include <asm/addrspace.h> 26 #include <asm/bootinfo.h> 27 #include <asm/bugs.h> 28 #include <asm/cache.h> 29 #include <asm/cpu.h> 30 #include <asm/sections.h> 31 #include <asm/setup.h> 32 #include <asm/smp-ops.h> 33 #include <asm/system.h> 34 35 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; 36 37 EXPORT_SYMBOL(cpu_data); 38 39 #ifdef CONFIG_VT 40 struct screen_info screen_info; 41 #endif 42 43 /* 44 * Despite it's name this variable is even if we don't have PCI 45 */ 46 unsigned int PCI_DMA_BUS_IS_PHYS; 47 48 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS); 49 50 /* 51 * Setup information 52 * 53 * These are initialized so they are in the .data section 54 */ 55 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; 56 57 EXPORT_SYMBOL(mips_machtype); 58 59 struct boot_mem_map boot_mem_map; 60 61 static char command_line[CL_SIZE]; 62 char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE; 63 64 /* 65 * mips_io_port_base is the begin of the address space to which x86 style 66 * I/O ports are mapped. 67 */ 68 const unsigned long mips_io_port_base __read_mostly = -1; 69 EXPORT_SYMBOL(mips_io_port_base); 70 71 static struct resource code_resource = { .name = "Kernel code", }; 72 static struct resource data_resource = { .name = "Kernel data", }; 73 74 void __init add_memory_region(phys_t start, phys_t size, long type) 75 { 76 int x = boot_mem_map.nr_map; 77 struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1; 78 79 /* Sanity check */ 80 if (start + size < start) { 81 printk("Trying to add an invalid memory region, skipped\n"); 82 return; 83 } 84 85 /* 86 * Try to merge with previous entry if any. This is far less than 87 * perfect but is sufficient for most real world cases. 88 */ 89 if (x && prev->addr + prev->size == start && prev->type == type) { 90 prev->size += size; 91 return; 92 } 93 94 if (x == BOOT_MEM_MAP_MAX) { 95 printk("Ooops! Too many entries in the memory map!\n"); 96 return; 97 } 98 99 boot_mem_map.map[x].addr = start; 100 boot_mem_map.map[x].size = size; 101 boot_mem_map.map[x].type = type; 102 boot_mem_map.nr_map++; 103 } 104 105 static void __init print_memory_map(void) 106 { 107 int i; 108 const int field = 2 * sizeof(unsigned long); 109 110 for (i = 0; i < boot_mem_map.nr_map; i++) { 111 printk(" memory: %0*Lx @ %0*Lx ", 112 field, (unsigned long long) boot_mem_map.map[i].size, 113 field, (unsigned long long) boot_mem_map.map[i].addr); 114 115 switch (boot_mem_map.map[i].type) { 116 case BOOT_MEM_RAM: 117 printk("(usable)\n"); 118 break; 119 case BOOT_MEM_ROM_DATA: 120 printk("(ROM data)\n"); 121 break; 122 case BOOT_MEM_RESERVED: 123 printk("(reserved)\n"); 124 break; 125 default: 126 printk("type %lu\n", boot_mem_map.map[i].type); 127 break; 128 } 129 } 130 } 131 132 /* 133 * Manage initrd 134 */ 135 #ifdef CONFIG_BLK_DEV_INITRD 136 137 static int __init rd_start_early(char *p) 138 { 139 unsigned long start = memparse(p, &p); 140 141 #ifdef CONFIG_64BIT 142 /* Guess if the sign extension was forgotten by bootloader */ 143 if (start < XKPHYS) 144 start = (int)start; 145 #endif 146 initrd_start = start; 147 initrd_end += start; 148 return 0; 149 } 150 early_param("rd_start", rd_start_early); 151 152 static int __init rd_size_early(char *p) 153 { 154 initrd_end += memparse(p, &p); 155 return 0; 156 } 157 early_param("rd_size", rd_size_early); 158 159 /* it returns the next free pfn after initrd */ 160 static unsigned long __init init_initrd(void) 161 { 162 unsigned long end; 163 u32 *initrd_header; 164 165 /* 166 * Board specific code or command line parser should have 167 * already set up initrd_start and initrd_end. In these cases 168 * perfom sanity checks and use them if all looks good. 169 */ 170 if (initrd_start && initrd_end > initrd_start) 171 goto sanitize; 172 173 /* 174 * See if initrd has been added to the kernel image by 175 * arch/mips/boot/addinitrd.c. In that case a header is 176 * prepended to initrd and is made up by 8 bytes. The fisrt 177 * word is a magic number and the second one is the size of 178 * initrd. Initrd start must be page aligned in any cases. 179 */ 180 initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8; 181 if (initrd_header[0] != 0x494E5244) 182 goto disable; 183 initrd_start = (unsigned long)(initrd_header + 2); 184 initrd_end = initrd_start + initrd_header[1]; 185 186 sanitize: 187 if (initrd_start & ~PAGE_MASK) { 188 printk(KERN_ERR "initrd start must be page aligned\n"); 189 goto disable; 190 } 191 if (initrd_start < PAGE_OFFSET) { 192 printk(KERN_ERR "initrd start < PAGE_OFFSET\n"); 193 goto disable; 194 } 195 196 /* 197 * Sanitize initrd addresses. For example firmware 198 * can't guess if they need to pass them through 199 * 64-bits values if the kernel has been built in pure 200 * 32-bit. We need also to switch from KSEG0 to XKPHYS 201 * addresses now, so the code can now safely use __pa(). 202 */ 203 end = __pa(initrd_end); 204 initrd_end = (unsigned long)__va(end); 205 initrd_start = (unsigned long)__va(__pa(initrd_start)); 206 207 ROOT_DEV = Root_RAM0; 208 return PFN_UP(end); 209 disable: 210 initrd_start = 0; 211 initrd_end = 0; 212 return 0; 213 } 214 215 static void __init finalize_initrd(void) 216 { 217 unsigned long size = initrd_end - initrd_start; 218 219 if (size == 0) { 220 printk(KERN_INFO "Initrd not found or empty"); 221 goto disable; 222 } 223 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { 224 printk("Initrd extends beyond end of memory"); 225 goto disable; 226 } 227 228 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT); 229 initrd_below_start_ok = 1; 230 231 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n", 232 initrd_start, size); 233 return; 234 disable: 235 printk(" - disabling initrd\n"); 236 initrd_start = 0; 237 initrd_end = 0; 238 } 239 240 #else /* !CONFIG_BLK_DEV_INITRD */ 241 242 static unsigned long __init init_initrd(void) 243 { 244 return 0; 245 } 246 247 #define finalize_initrd() do {} while (0) 248 249 #endif 250 251 /* 252 * Initialize the bootmem allocator. It also setup initrd related data 253 * if needed. 254 */ 255 #ifdef CONFIG_SGI_IP27 256 257 static void __init bootmem_init(void) 258 { 259 init_initrd(); 260 finalize_initrd(); 261 } 262 263 #else /* !CONFIG_SGI_IP27 */ 264 265 static void __init bootmem_init(void) 266 { 267 unsigned long reserved_end; 268 unsigned long mapstart = ~0UL; 269 unsigned long bootmap_size; 270 int i; 271 272 /* 273 * Init any data related to initrd. It's a nop if INITRD is 274 * not selected. Once that done we can determine the low bound 275 * of usable memory. 276 */ 277 reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end))); 278 279 /* 280 * max_low_pfn is not a number of pages. The number of pages 281 * of the system is given by 'max_low_pfn - min_low_pfn'. 282 */ 283 min_low_pfn = ~0UL; 284 max_low_pfn = 0; 285 286 /* 287 * Find the highest page frame number we have available. 288 */ 289 for (i = 0; i < boot_mem_map.nr_map; i++) { 290 unsigned long start, end; 291 292 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) 293 continue; 294 295 start = PFN_UP(boot_mem_map.map[i].addr); 296 end = PFN_DOWN(boot_mem_map.map[i].addr 297 + boot_mem_map.map[i].size); 298 299 if (end > max_low_pfn) 300 max_low_pfn = end; 301 if (start < min_low_pfn) 302 min_low_pfn = start; 303 if (end <= reserved_end) 304 continue; 305 if (start >= mapstart) 306 continue; 307 mapstart = max(reserved_end, start); 308 } 309 310 if (min_low_pfn >= max_low_pfn) 311 panic("Incorrect memory mapping !!!"); 312 if (min_low_pfn > ARCH_PFN_OFFSET) { 313 printk(KERN_INFO 314 "Wasting %lu bytes for tracking %lu unused pages\n", 315 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page), 316 min_low_pfn - ARCH_PFN_OFFSET); 317 } else if (min_low_pfn < ARCH_PFN_OFFSET) { 318 printk(KERN_INFO 319 "%lu free pages won't be used\n", 320 ARCH_PFN_OFFSET - min_low_pfn); 321 } 322 min_low_pfn = ARCH_PFN_OFFSET; 323 324 /* 325 * Determine low and high memory ranges 326 */ 327 max_pfn = max_low_pfn; 328 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { 329 #ifdef CONFIG_HIGHMEM 330 highstart_pfn = PFN_DOWN(HIGHMEM_START); 331 highend_pfn = max_low_pfn; 332 #endif 333 max_low_pfn = PFN_DOWN(HIGHMEM_START); 334 } 335 336 /* 337 * Initialize the boot-time allocator with low memory only. 338 */ 339 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart, 340 min_low_pfn, max_low_pfn); 341 342 343 for (i = 0; i < boot_mem_map.nr_map; i++) { 344 unsigned long start, end; 345 346 start = PFN_UP(boot_mem_map.map[i].addr); 347 end = PFN_DOWN(boot_mem_map.map[i].addr 348 + boot_mem_map.map[i].size); 349 350 if (start <= min_low_pfn) 351 start = min_low_pfn; 352 if (start >= end) 353 continue; 354 355 #ifndef CONFIG_HIGHMEM 356 if (end > max_low_pfn) 357 end = max_low_pfn; 358 359 /* 360 * ... finally, is the area going away? 361 */ 362 if (end <= start) 363 continue; 364 #endif 365 366 add_active_range(0, start, end); 367 } 368 369 /* 370 * Register fully available low RAM pages with the bootmem allocator. 371 */ 372 for (i = 0; i < boot_mem_map.nr_map; i++) { 373 unsigned long start, end, size; 374 375 /* 376 * Reserve usable memory. 377 */ 378 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) 379 continue; 380 381 start = PFN_UP(boot_mem_map.map[i].addr); 382 end = PFN_DOWN(boot_mem_map.map[i].addr 383 + boot_mem_map.map[i].size); 384 /* 385 * We are rounding up the start address of usable memory 386 * and at the end of the usable range downwards. 387 */ 388 if (start >= max_low_pfn) 389 continue; 390 if (start < reserved_end) 391 start = reserved_end; 392 if (end > max_low_pfn) 393 end = max_low_pfn; 394 395 /* 396 * ... finally, is the area going away? 397 */ 398 if (end <= start) 399 continue; 400 size = end - start; 401 402 /* Register lowmem ranges */ 403 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT); 404 memory_present(0, start, end); 405 } 406 407 /* 408 * Reserve the bootmap memory. 409 */ 410 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT); 411 412 /* 413 * Reserve initrd memory if needed. 414 */ 415 finalize_initrd(); 416 } 417 418 #endif /* CONFIG_SGI_IP27 */ 419 420 /* 421 * arch_mem_init - initialize memory management subsystem 422 * 423 * o plat_mem_setup() detects the memory configuration and will record detected 424 * memory areas using add_memory_region. 425 * 426 * At this stage the memory configuration of the system is known to the 427 * kernel but generic memory management system is still entirely uninitialized. 428 * 429 * o bootmem_init() 430 * o sparse_init() 431 * o paging_init() 432 * 433 * At this stage the bootmem allocator is ready to use. 434 * 435 * NOTE: historically plat_mem_setup did the entire platform initialization. 436 * This was rather impractical because it meant plat_mem_setup had to 437 * get away without any kind of memory allocator. To keep old code from 438 * breaking plat_setup was just renamed to plat_setup and a second platform 439 * initialization hook for anything else was introduced. 440 */ 441 442 static int usermem __initdata = 0; 443 444 static int __init early_parse_mem(char *p) 445 { 446 unsigned long start, size; 447 448 /* 449 * If a user specifies memory size, we 450 * blow away any automatically generated 451 * size. 452 */ 453 if (usermem == 0) { 454 boot_mem_map.nr_map = 0; 455 usermem = 1; 456 } 457 start = 0; 458 size = memparse(p, &p); 459 if (*p == '@') 460 start = memparse(p + 1, &p); 461 462 add_memory_region(start, size, BOOT_MEM_RAM); 463 return 0; 464 } 465 early_param("mem", early_parse_mem); 466 467 static void __init arch_mem_init(char **cmdline_p) 468 { 469 extern void plat_mem_setup(void); 470 471 /* call board setup routine */ 472 plat_mem_setup(); 473 474 printk("Determined physical RAM map:\n"); 475 print_memory_map(); 476 477 strlcpy(command_line, arcs_cmdline, sizeof(command_line)); 478 strlcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); 479 480 *cmdline_p = command_line; 481 482 parse_early_param(); 483 484 if (usermem) { 485 printk("User-defined physical RAM map:\n"); 486 print_memory_map(); 487 } 488 489 bootmem_init(); 490 sparse_init(); 491 paging_init(); 492 } 493 494 static void __init resource_init(void) 495 { 496 int i; 497 498 if (UNCAC_BASE != IO_BASE) 499 return; 500 501 code_resource.start = __pa_symbol(&_text); 502 code_resource.end = __pa_symbol(&_etext) - 1; 503 data_resource.start = __pa_symbol(&_etext); 504 data_resource.end = __pa_symbol(&_edata) - 1; 505 506 /* 507 * Request address space for all standard RAM. 508 */ 509 for (i = 0; i < boot_mem_map.nr_map; i++) { 510 struct resource *res; 511 unsigned long start, end; 512 513 start = boot_mem_map.map[i].addr; 514 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; 515 if (start >= HIGHMEM_START) 516 continue; 517 if (end >= HIGHMEM_START) 518 end = HIGHMEM_START - 1; 519 520 res = alloc_bootmem(sizeof(struct resource)); 521 switch (boot_mem_map.map[i].type) { 522 case BOOT_MEM_RAM: 523 case BOOT_MEM_ROM_DATA: 524 res->name = "System RAM"; 525 break; 526 case BOOT_MEM_RESERVED: 527 default: 528 res->name = "reserved"; 529 } 530 531 res->start = start; 532 res->end = end; 533 534 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 535 request_resource(&iomem_resource, res); 536 537 /* 538 * We don't know which RAM region contains kernel data, 539 * so we try it repeatedly and let the resource manager 540 * test it. 541 */ 542 request_resource(res, &code_resource); 543 request_resource(res, &data_resource); 544 } 545 } 546 547 void __init setup_arch(char **cmdline_p) 548 { 549 cpu_probe(); 550 prom_init(); 551 552 #ifdef CONFIG_EARLY_PRINTK 553 setup_early_printk(); 554 #endif 555 cpu_report(); 556 check_bugs_early(); 557 558 #if defined(CONFIG_VT) 559 #if defined(CONFIG_VGA_CONSOLE) 560 conswitchp = &vga_con; 561 #elif defined(CONFIG_DUMMY_CONSOLE) 562 conswitchp = &dummy_con; 563 #endif 564 #endif 565 566 arch_mem_init(cmdline_p); 567 568 resource_init(); 569 plat_smp_setup(); 570 } 571 572 static int __init fpu_disable(char *s) 573 { 574 int i; 575 576 for (i = 0; i < NR_CPUS; i++) 577 cpu_data[i].options &= ~MIPS_CPU_FPU; 578 579 return 1; 580 } 581 582 __setup("nofpu", fpu_disable); 583 584 static int __init dsp_disable(char *s) 585 { 586 cpu_data[0].ases &= ~MIPS_ASE_DSP; 587 588 return 1; 589 } 590 591 __setup("nodsp", dsp_disable); 592 593 unsigned long kernelsp[NR_CPUS]; 594 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; 595 596 #ifdef CONFIG_DEBUG_FS 597 struct dentry *mips_debugfs_dir; 598 static int __init debugfs_mips(void) 599 { 600 struct dentry *d; 601 602 d = debugfs_create_dir("mips", NULL); 603 if (IS_ERR(d)) 604 return PTR_ERR(d); 605 mips_debugfs_dir = d; 606 return 0; 607 } 608 arch_initcall(debugfs_mips); 609 #endif 610