1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1995 Linus Torvalds 7 * Copyright (C) 1995 Waldorf Electronics 8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle 9 * Copyright (C) 1996 Stoned Elipot 10 * Copyright (C) 1999 Silicon Graphics, Inc. 11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki 12 */ 13 #include <linux/init.h> 14 #include <linux/ioport.h> 15 #include <linux/export.h> 16 #include <linux/screen_info.h> 17 #include <linux/memblock.h> 18 #include <linux/initrd.h> 19 #include <linux/root_dev.h> 20 #include <linux/highmem.h> 21 #include <linux/console.h> 22 #include <linux/pfn.h> 23 #include <linux/debugfs.h> 24 #include <linux/kexec.h> 25 #include <linux/sizes.h> 26 #include <linux/device.h> 27 #include <linux/dma-map-ops.h> 28 #include <linux/decompress/generic.h> 29 #include <linux/of_fdt.h> 30 #include <linux/of_reserved_mem.h> 31 #include <linux/dmi.h> 32 33 #include <asm/addrspace.h> 34 #include <asm/bootinfo.h> 35 #include <asm/bugs.h> 36 #include <asm/cache.h> 37 #include <asm/cdmm.h> 38 #include <asm/cpu.h> 39 #include <asm/debug.h> 40 #include <asm/dma-coherence.h> 41 #include <asm/sections.h> 42 #include <asm/setup.h> 43 #include <asm/smp-ops.h> 44 #include <asm/prom.h> 45 46 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB 47 const char __section(.appended_dtb) __appended_dtb[0x100000]; 48 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */ 49 50 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; 51 52 EXPORT_SYMBOL(cpu_data); 53 54 #ifdef CONFIG_VT 55 struct screen_info screen_info; 56 #endif 57 58 /* 59 * Setup information 60 * 61 * These are initialized so they are in the .data section 62 */ 63 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; 64 65 EXPORT_SYMBOL(mips_machtype); 66 67 static char __initdata command_line[COMMAND_LINE_SIZE]; 68 char __initdata arcs_cmdline[COMMAND_LINE_SIZE]; 69 70 #ifdef CONFIG_CMDLINE_BOOL 71 static const char builtin_cmdline[] __initconst = CONFIG_CMDLINE; 72 #else 73 static const char builtin_cmdline[] __initconst = ""; 74 #endif 75 76 /* 77 * mips_io_port_base is the begin of the address space to which x86 style 78 * I/O ports are mapped. 79 */ 80 unsigned long mips_io_port_base = -1; 81 EXPORT_SYMBOL(mips_io_port_base); 82 83 static struct resource code_resource = { .name = "Kernel code", }; 84 static struct resource data_resource = { .name = "Kernel data", }; 85 static struct resource bss_resource = { .name = "Kernel bss", }; 86 87 static void *detect_magic __initdata = detect_memory_region; 88 89 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET 90 unsigned long ARCH_PFN_OFFSET; 91 EXPORT_SYMBOL(ARCH_PFN_OFFSET); 92 #endif 93 94 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type) 95 { 96 /* 97 * Note: This function only exists for historical reason, 98 * new code should use memblock_add or memblock_add_node instead. 99 */ 100 101 /* 102 * If the region reaches the top of the physical address space, adjust 103 * the size slightly so that (start + size) doesn't overflow 104 */ 105 if (start + size - 1 == PHYS_ADDR_MAX) 106 --size; 107 108 /* Sanity check */ 109 if (start + size < start) { 110 pr_warn("Trying to add an invalid memory region, skipped\n"); 111 return; 112 } 113 114 if (start < PHYS_OFFSET) 115 return; 116 117 memblock_add(start, size); 118 /* Reserve any memory except the ordinary RAM ranges. */ 119 switch (type) { 120 case BOOT_MEM_RAM: 121 break; 122 123 case BOOT_MEM_NOMAP: /* Discard the range from the system. */ 124 memblock_remove(start, size); 125 break; 126 127 default: /* Reserve the rest of the memory types at boot time */ 128 memblock_reserve(start, size); 129 break; 130 } 131 } 132 133 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max) 134 { 135 void *dm = &detect_magic; 136 phys_addr_t size; 137 138 for (size = sz_min; size < sz_max; size <<= 1) { 139 if (!memcmp(dm, dm + size, sizeof(detect_magic))) 140 break; 141 } 142 143 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n", 144 ((unsigned long long) size) / SZ_1M, 145 (unsigned long long) start, 146 ((unsigned long long) sz_min) / SZ_1M, 147 ((unsigned long long) sz_max) / SZ_1M); 148 149 add_memory_region(start, size, BOOT_MEM_RAM); 150 } 151 152 /* 153 * Manage initrd 154 */ 155 #ifdef CONFIG_BLK_DEV_INITRD 156 157 static int __init rd_start_early(char *p) 158 { 159 unsigned long start = memparse(p, &p); 160 161 #ifdef CONFIG_64BIT 162 /* Guess if the sign extension was forgotten by bootloader */ 163 if (start < XKPHYS) 164 start = (int)start; 165 #endif 166 initrd_start = start; 167 initrd_end += start; 168 return 0; 169 } 170 early_param("rd_start", rd_start_early); 171 172 static int __init rd_size_early(char *p) 173 { 174 initrd_end += memparse(p, &p); 175 return 0; 176 } 177 early_param("rd_size", rd_size_early); 178 179 /* it returns the next free pfn after initrd */ 180 static unsigned long __init init_initrd(void) 181 { 182 unsigned long end; 183 184 /* 185 * Board specific code or command line parser should have 186 * already set up initrd_start and initrd_end. In these cases 187 * perfom sanity checks and use them if all looks good. 188 */ 189 if (!initrd_start || initrd_end <= initrd_start) 190 goto disable; 191 192 if (initrd_start & ~PAGE_MASK) { 193 pr_err("initrd start must be page aligned\n"); 194 goto disable; 195 } 196 if (initrd_start < PAGE_OFFSET) { 197 pr_err("initrd start < PAGE_OFFSET\n"); 198 goto disable; 199 } 200 201 /* 202 * Sanitize initrd addresses. For example firmware 203 * can't guess if they need to pass them through 204 * 64-bits values if the kernel has been built in pure 205 * 32-bit. We need also to switch from KSEG0 to XKPHYS 206 * addresses now, so the code can now safely use __pa(). 207 */ 208 end = __pa(initrd_end); 209 initrd_end = (unsigned long)__va(end); 210 initrd_start = (unsigned long)__va(__pa(initrd_start)); 211 212 ROOT_DEV = Root_RAM0; 213 return PFN_UP(end); 214 disable: 215 initrd_start = 0; 216 initrd_end = 0; 217 return 0; 218 } 219 220 /* In some conditions (e.g. big endian bootloader with a little endian 221 kernel), the initrd might appear byte swapped. Try to detect this and 222 byte swap it if needed. */ 223 static void __init maybe_bswap_initrd(void) 224 { 225 #if defined(CONFIG_CPU_CAVIUM_OCTEON) 226 u64 buf; 227 228 /* Check for CPIO signature */ 229 if (!memcmp((void *)initrd_start, "070701", 6)) 230 return; 231 232 /* Check for compressed initrd */ 233 if (decompress_method((unsigned char *)initrd_start, 8, NULL)) 234 return; 235 236 /* Try again with a byte swapped header */ 237 buf = swab64p((u64 *)initrd_start); 238 if (!memcmp(&buf, "070701", 6) || 239 decompress_method((unsigned char *)(&buf), 8, NULL)) { 240 unsigned long i; 241 242 pr_info("Byteswapped initrd detected\n"); 243 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8) 244 swab64s((u64 *)i); 245 } 246 #endif 247 } 248 249 static void __init finalize_initrd(void) 250 { 251 unsigned long size = initrd_end - initrd_start; 252 253 if (size == 0) { 254 printk(KERN_INFO "Initrd not found or empty"); 255 goto disable; 256 } 257 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { 258 printk(KERN_ERR "Initrd extends beyond end of memory"); 259 goto disable; 260 } 261 262 maybe_bswap_initrd(); 263 264 memblock_reserve(__pa(initrd_start), size); 265 initrd_below_start_ok = 1; 266 267 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", 268 initrd_start, size); 269 return; 270 disable: 271 printk(KERN_CONT " - disabling initrd\n"); 272 initrd_start = 0; 273 initrd_end = 0; 274 } 275 276 #else /* !CONFIG_BLK_DEV_INITRD */ 277 278 static unsigned long __init init_initrd(void) 279 { 280 return 0; 281 } 282 283 #define finalize_initrd() do {} while (0) 284 285 #endif 286 287 /* 288 * Initialize the bootmem allocator. It also setup initrd related data 289 * if needed. 290 */ 291 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON64) && defined(CONFIG_NUMA)) 292 293 static void __init bootmem_init(void) 294 { 295 init_initrd(); 296 finalize_initrd(); 297 } 298 299 #else /* !CONFIG_SGI_IP27 */ 300 301 static void __init bootmem_init(void) 302 { 303 phys_addr_t ramstart, ramend; 304 phys_addr_t start, end; 305 u64 i; 306 307 ramstart = memblock_start_of_DRAM(); 308 ramend = memblock_end_of_DRAM(); 309 310 /* 311 * Sanity check any INITRD first. We don't take it into account 312 * for bootmem setup initially, rely on the end-of-kernel-code 313 * as our memory range starting point. Once bootmem is inited we 314 * will reserve the area used for the initrd. 315 */ 316 init_initrd(); 317 318 /* Reserve memory occupied by kernel. */ 319 memblock_reserve(__pa_symbol(&_text), 320 __pa_symbol(&_end) - __pa_symbol(&_text)); 321 322 /* max_low_pfn is not a number of pages but the end pfn of low mem */ 323 324 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET 325 ARCH_PFN_OFFSET = PFN_UP(ramstart); 326 #else 327 /* 328 * Reserve any memory between the start of RAM and PHYS_OFFSET 329 */ 330 if (ramstart > PHYS_OFFSET) 331 memblock_reserve(PHYS_OFFSET, ramstart - PHYS_OFFSET); 332 333 if (PFN_UP(ramstart) > ARCH_PFN_OFFSET) { 334 pr_info("Wasting %lu bytes for tracking %lu unused pages\n", 335 (unsigned long)((PFN_UP(ramstart) - ARCH_PFN_OFFSET) * sizeof(struct page)), 336 (unsigned long)(PFN_UP(ramstart) - ARCH_PFN_OFFSET)); 337 } 338 #endif 339 340 min_low_pfn = ARCH_PFN_OFFSET; 341 max_pfn = PFN_DOWN(ramend); 342 for_each_mem_range(i, &start, &end) { 343 /* 344 * Skip highmem here so we get an accurate max_low_pfn if low 345 * memory stops short of high memory. 346 * If the region overlaps HIGHMEM_START, end is clipped so 347 * max_pfn excludes the highmem portion. 348 */ 349 if (start >= PFN_DOWN(HIGHMEM_START)) 350 continue; 351 if (end > PFN_DOWN(HIGHMEM_START)) 352 end = PFN_DOWN(HIGHMEM_START); 353 if (end > max_low_pfn) 354 max_low_pfn = end; 355 } 356 357 if (min_low_pfn >= max_low_pfn) 358 panic("Incorrect memory mapping !!!"); 359 360 if (max_pfn > PFN_DOWN(HIGHMEM_START)) { 361 #ifdef CONFIG_HIGHMEM 362 highstart_pfn = PFN_DOWN(HIGHMEM_START); 363 highend_pfn = max_pfn; 364 #else 365 max_low_pfn = PFN_DOWN(HIGHMEM_START); 366 max_pfn = max_low_pfn; 367 #endif 368 } 369 370 /* 371 * Reserve initrd memory if needed. 372 */ 373 finalize_initrd(); 374 } 375 376 #endif /* CONFIG_SGI_IP27 */ 377 378 static int usermem __initdata; 379 380 static int __init early_parse_mem(char *p) 381 { 382 phys_addr_t start, size; 383 384 /* 385 * If a user specifies memory size, we 386 * blow away any automatically generated 387 * size. 388 */ 389 if (usermem == 0) { 390 usermem = 1; 391 memblock_remove(memblock_start_of_DRAM(), 392 memblock_end_of_DRAM() - memblock_start_of_DRAM()); 393 } 394 start = 0; 395 size = memparse(p, &p); 396 if (*p == '@') 397 start = memparse(p + 1, &p); 398 399 add_memory_region(start, size, BOOT_MEM_RAM); 400 401 return 0; 402 } 403 early_param("mem", early_parse_mem); 404 405 static int __init early_parse_memmap(char *p) 406 { 407 char *oldp; 408 u64 start_at, mem_size; 409 410 if (!p) 411 return -EINVAL; 412 413 if (!strncmp(p, "exactmap", 8)) { 414 pr_err("\"memmap=exactmap\" invalid on MIPS\n"); 415 return 0; 416 } 417 418 oldp = p; 419 mem_size = memparse(p, &p); 420 if (p == oldp) 421 return -EINVAL; 422 423 if (*p == '@') { 424 start_at = memparse(p+1, &p); 425 add_memory_region(start_at, mem_size, BOOT_MEM_RAM); 426 } else if (*p == '#') { 427 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n"); 428 return -EINVAL; 429 } else if (*p == '$') { 430 start_at = memparse(p+1, &p); 431 add_memory_region(start_at, mem_size, BOOT_MEM_RESERVED); 432 } else { 433 pr_err("\"memmap\" invalid format!\n"); 434 return -EINVAL; 435 } 436 437 if (*p == '\0') { 438 usermem = 1; 439 return 0; 440 } else 441 return -EINVAL; 442 } 443 early_param("memmap", early_parse_memmap); 444 445 #ifdef CONFIG_PROC_VMCORE 446 unsigned long setup_elfcorehdr, setup_elfcorehdr_size; 447 static int __init early_parse_elfcorehdr(char *p) 448 { 449 phys_addr_t start, end; 450 u64 i; 451 452 setup_elfcorehdr = memparse(p, &p); 453 454 for_each_mem_range(i, &start, &end) { 455 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) { 456 /* 457 * Reserve from the elf core header to the end of 458 * the memory segment, that should all be kdump 459 * reserved memory. 460 */ 461 setup_elfcorehdr_size = end - setup_elfcorehdr; 462 break; 463 } 464 } 465 /* 466 * If we don't find it in the memory map, then we shouldn't 467 * have to worry about it, as the new kernel won't use it. 468 */ 469 return 0; 470 } 471 early_param("elfcorehdr", early_parse_elfcorehdr); 472 #endif 473 474 #ifdef CONFIG_KEXEC 475 static void __init mips_parse_crashkernel(void) 476 { 477 unsigned long long total_mem; 478 unsigned long long crash_size, crash_base; 479 int ret; 480 481 total_mem = memblock_phys_mem_size(); 482 ret = parse_crashkernel(boot_command_line, total_mem, 483 &crash_size, &crash_base); 484 if (ret != 0 || crash_size <= 0) 485 return; 486 487 if (!memblock_find_in_range(crash_base, crash_base + crash_size, crash_size, 1)) { 488 pr_warn("Invalid memory region reserved for crash kernel\n"); 489 return; 490 } 491 492 crashk_res.start = crash_base; 493 crashk_res.end = crash_base + crash_size - 1; 494 } 495 496 static void __init request_crashkernel(struct resource *res) 497 { 498 int ret; 499 500 if (crashk_res.start == crashk_res.end) 501 return; 502 503 ret = request_resource(res, &crashk_res); 504 if (!ret) 505 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n", 506 (unsigned long)(resource_size(&crashk_res) >> 20), 507 (unsigned long)(crashk_res.start >> 20)); 508 } 509 #else /* !defined(CONFIG_KEXEC) */ 510 static void __init mips_parse_crashkernel(void) 511 { 512 } 513 514 static void __init request_crashkernel(struct resource *res) 515 { 516 } 517 #endif /* !defined(CONFIG_KEXEC) */ 518 519 static void __init check_kernel_sections_mem(void) 520 { 521 phys_addr_t start = PFN_PHYS(PFN_DOWN(__pa_symbol(&_text))); 522 phys_addr_t size = PFN_PHYS(PFN_UP(__pa_symbol(&_end))) - start; 523 524 if (!memblock_is_region_memory(start, size)) { 525 pr_info("Kernel sections are not in the memory maps\n"); 526 memblock_add(start, size); 527 } 528 } 529 530 static void __init bootcmdline_append(const char *s, size_t max) 531 { 532 if (!s[0] || !max) 533 return; 534 535 if (boot_command_line[0]) 536 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); 537 538 strlcat(boot_command_line, s, max); 539 } 540 541 #ifdef CONFIG_OF_EARLY_FLATTREE 542 543 static int __init bootcmdline_scan_chosen(unsigned long node, const char *uname, 544 int depth, void *data) 545 { 546 bool *dt_bootargs = data; 547 const char *p; 548 int l; 549 550 if (depth != 1 || !data || 551 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0)) 552 return 0; 553 554 p = of_get_flat_dt_prop(node, "bootargs", &l); 555 if (p != NULL && l > 0) { 556 bootcmdline_append(p, min(l, COMMAND_LINE_SIZE)); 557 *dt_bootargs = true; 558 } 559 560 return 1; 561 } 562 563 #endif /* CONFIG_OF_EARLY_FLATTREE */ 564 565 static void __init bootcmdline_init(void) 566 { 567 bool dt_bootargs = false; 568 569 /* 570 * If CMDLINE_OVERRIDE is enabled then initializing the command line is 571 * trivial - we simply use the built-in command line unconditionally & 572 * unmodified. 573 */ 574 if (IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) { 575 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 576 return; 577 } 578 579 /* 580 * If the user specified a built-in command line & 581 * MIPS_CMDLINE_BUILTIN_EXTEND, then the built-in command line is 582 * prepended to arguments from the bootloader or DT so we'll copy them 583 * to the start of boot_command_line here. Otherwise, empty 584 * boot_command_line to undo anything early_init_dt_scan_chosen() did. 585 */ 586 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)) 587 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 588 else 589 boot_command_line[0] = 0; 590 591 #ifdef CONFIG_OF_EARLY_FLATTREE 592 /* 593 * If we're configured to take boot arguments from DT, look for those 594 * now. 595 */ 596 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB) || 597 IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)) 598 of_scan_flat_dt(bootcmdline_scan_chosen, &dt_bootargs); 599 #endif 600 601 /* 602 * If we didn't get any arguments from DT (regardless of whether that's 603 * because we weren't configured to look for them, or because we looked 604 * & found none) then we'll take arguments from the bootloader. 605 * plat_mem_setup() should have filled arcs_cmdline with arguments from 606 * the bootloader. 607 */ 608 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND) || !dt_bootargs) 609 bootcmdline_append(arcs_cmdline, COMMAND_LINE_SIZE); 610 611 /* 612 * If the user specified a built-in command line & we didn't already 613 * prepend it, we append it to boot_command_line here. 614 */ 615 if (IS_ENABLED(CONFIG_CMDLINE_BOOL) && 616 !IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)) 617 bootcmdline_append(builtin_cmdline, COMMAND_LINE_SIZE); 618 } 619 620 /* 621 * arch_mem_init - initialize memory management subsystem 622 * 623 * o plat_mem_setup() detects the memory configuration and will record detected 624 * memory areas using add_memory_region. 625 * 626 * At this stage the memory configuration of the system is known to the 627 * kernel but generic memory management system is still entirely uninitialized. 628 * 629 * o bootmem_init() 630 * o sparse_init() 631 * o paging_init() 632 * o dma_contiguous_reserve() 633 * 634 * At this stage the bootmem allocator is ready to use. 635 * 636 * NOTE: historically plat_mem_setup did the entire platform initialization. 637 * This was rather impractical because it meant plat_mem_setup had to 638 * get away without any kind of memory allocator. To keep old code from 639 * breaking plat_setup was just renamed to plat_mem_setup and a second platform 640 * initialization hook for anything else was introduced. 641 */ 642 static void __init arch_mem_init(char **cmdline_p) 643 { 644 /* call board setup routine */ 645 plat_mem_setup(); 646 memblock_set_bottom_up(true); 647 648 bootcmdline_init(); 649 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 650 *cmdline_p = command_line; 651 652 parse_early_param(); 653 654 if (usermem) 655 pr_info("User-defined physical RAM map overwrite\n"); 656 657 check_kernel_sections_mem(); 658 659 early_init_fdt_reserve_self(); 660 early_init_fdt_scan_reserved_mem(); 661 662 #ifndef CONFIG_NUMA 663 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0); 664 #endif 665 bootmem_init(); 666 667 /* 668 * Prevent memblock from allocating high memory. 669 * This cannot be done before max_low_pfn is detected, so up 670 * to this point is possible to only reserve physical memory 671 * with memblock_reserve; memblock_alloc* can be used 672 * only after this point 673 */ 674 memblock_set_current_limit(PFN_PHYS(max_low_pfn)); 675 676 #ifdef CONFIG_PROC_VMCORE 677 if (setup_elfcorehdr && setup_elfcorehdr_size) { 678 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n", 679 setup_elfcorehdr, setup_elfcorehdr_size); 680 memblock_reserve(setup_elfcorehdr, setup_elfcorehdr_size); 681 } 682 #endif 683 684 mips_parse_crashkernel(); 685 #ifdef CONFIG_KEXEC 686 if (crashk_res.start != crashk_res.end) 687 memblock_reserve(crashk_res.start, resource_size(&crashk_res)); 688 #endif 689 device_tree_init(); 690 691 /* 692 * In order to reduce the possibility of kernel panic when failed to 693 * get IO TLB memory under CONFIG_SWIOTLB, it is better to allocate 694 * low memory as small as possible before plat_swiotlb_setup(), so 695 * make sparse_init() using top-down allocation. 696 */ 697 memblock_set_bottom_up(false); 698 sparse_init(); 699 memblock_set_bottom_up(true); 700 701 plat_swiotlb_setup(); 702 703 dma_contiguous_reserve(PFN_PHYS(max_low_pfn)); 704 705 /* Reserve for hibernation. */ 706 memblock_reserve(__pa_symbol(&__nosave_begin), 707 __pa_symbol(&__nosave_end) - __pa_symbol(&__nosave_begin)); 708 709 fdt_init_reserved_mem(); 710 711 memblock_dump_all(); 712 713 early_memtest(PFN_PHYS(ARCH_PFN_OFFSET), PFN_PHYS(max_low_pfn)); 714 } 715 716 static void __init resource_init(void) 717 { 718 phys_addr_t start, end; 719 u64 i; 720 721 if (UNCAC_BASE != IO_BASE) 722 return; 723 724 code_resource.start = __pa_symbol(&_text); 725 code_resource.end = __pa_symbol(&_etext) - 1; 726 data_resource.start = __pa_symbol(&_etext); 727 data_resource.end = __pa_symbol(&_edata) - 1; 728 bss_resource.start = __pa_symbol(&__bss_start); 729 bss_resource.end = __pa_symbol(&__bss_stop) - 1; 730 731 for_each_mem_range(i, &start, &end) { 732 struct resource *res; 733 734 res = memblock_alloc(sizeof(struct resource), SMP_CACHE_BYTES); 735 if (!res) 736 panic("%s: Failed to allocate %zu bytes\n", __func__, 737 sizeof(struct resource)); 738 739 res->start = start; 740 /* 741 * In memblock, end points to the first byte after the 742 * range while in resourses, end points to the last byte in 743 * the range. 744 */ 745 res->end = end - 1; 746 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 747 res->name = "System RAM"; 748 749 request_resource(&iomem_resource, res); 750 751 /* 752 * We don't know which RAM region contains kernel data, 753 * so we try it repeatedly and let the resource manager 754 * test it. 755 */ 756 request_resource(res, &code_resource); 757 request_resource(res, &data_resource); 758 request_resource(res, &bss_resource); 759 request_crashkernel(res); 760 } 761 } 762 763 #ifdef CONFIG_SMP 764 static void __init prefill_possible_map(void) 765 { 766 int i, possible = num_possible_cpus(); 767 768 if (possible > nr_cpu_ids) 769 possible = nr_cpu_ids; 770 771 for (i = 0; i < possible; i++) 772 set_cpu_possible(i, true); 773 for (; i < NR_CPUS; i++) 774 set_cpu_possible(i, false); 775 776 nr_cpu_ids = possible; 777 } 778 #else 779 static inline void prefill_possible_map(void) {} 780 #endif 781 782 void __init setup_arch(char **cmdline_p) 783 { 784 cpu_probe(); 785 mips_cm_probe(); 786 prom_init(); 787 788 setup_early_fdc_console(); 789 #ifdef CONFIG_EARLY_PRINTK 790 setup_early_printk(); 791 #endif 792 cpu_report(); 793 check_bugs_early(); 794 795 #if defined(CONFIG_VT) 796 #if defined(CONFIG_VGA_CONSOLE) 797 conswitchp = &vga_con; 798 #endif 799 #endif 800 801 arch_mem_init(cmdline_p); 802 dmi_setup(); 803 804 resource_init(); 805 plat_smp_setup(); 806 prefill_possible_map(); 807 808 cpu_cache_init(); 809 paging_init(); 810 } 811 812 unsigned long kernelsp[NR_CPUS]; 813 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; 814 815 #ifdef CONFIG_USE_OF 816 unsigned long fw_passed_dtb; 817 #endif 818 819 #ifdef CONFIG_DEBUG_FS 820 struct dentry *mips_debugfs_dir; 821 static int __init debugfs_mips(void) 822 { 823 mips_debugfs_dir = debugfs_create_dir("mips", NULL); 824 return 0; 825 } 826 arch_initcall(debugfs_mips); 827 #endif 828 829 #ifdef CONFIG_DMA_MAYBE_COHERENT 830 /* User defined DMA coherency from command line. */ 831 enum coherent_io_user_state coherentio = IO_COHERENCE_DEFAULT; 832 EXPORT_SYMBOL_GPL(coherentio); 833 int hw_coherentio; /* Actual hardware supported DMA coherency setting. */ 834 835 static int __init setcoherentio(char *str) 836 { 837 coherentio = IO_COHERENCE_ENABLED; 838 pr_info("Hardware DMA cache coherency (command line)\n"); 839 return 0; 840 } 841 early_param("coherentio", setcoherentio); 842 843 static int __init setnocoherentio(char *str) 844 { 845 coherentio = IO_COHERENCE_DISABLED; 846 pr_info("Software DMA cache coherency (command line)\n"); 847 return 0; 848 } 849 early_param("nocoherentio", setnocoherentio); 850 #endif 851