1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1995 Linus Torvalds 7 * Copyright (C) 1995 Waldorf Electronics 8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle 9 * Copyright (C) 1996 Stoned Elipot 10 * Copyright (C) 1999 Silicon Graphics, Inc. 11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki 12 */ 13 #include <linux/init.h> 14 #include <linux/ioport.h> 15 #include <linux/module.h> 16 #include <linux/screen_info.h> 17 #include <linux/bootmem.h> 18 #include <linux/initrd.h> 19 #include <linux/root_dev.h> 20 #include <linux/highmem.h> 21 #include <linux/console.h> 22 #include <linux/pfn.h> 23 #include <linux/debugfs.h> 24 25 #include <asm/addrspace.h> 26 #include <asm/bootinfo.h> 27 #include <asm/bugs.h> 28 #include <asm/cache.h> 29 #include <asm/cpu.h> 30 #include <asm/sections.h> 31 #include <asm/setup.h> 32 #include <asm/smp-ops.h> 33 #include <asm/system.h> 34 35 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; 36 37 EXPORT_SYMBOL(cpu_data); 38 39 #ifdef CONFIG_VT 40 struct screen_info screen_info; 41 #endif 42 43 /* 44 * Despite it's name this variable is even if we don't have PCI 45 */ 46 unsigned int PCI_DMA_BUS_IS_PHYS; 47 48 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS); 49 50 /* 51 * Setup information 52 * 53 * These are initialized so they are in the .data section 54 */ 55 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; 56 57 EXPORT_SYMBOL(mips_machtype); 58 59 struct boot_mem_map boot_mem_map; 60 61 static char command_line[CL_SIZE]; 62 char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE; 63 64 /* 65 * mips_io_port_base is the begin of the address space to which x86 style 66 * I/O ports are mapped. 67 */ 68 const unsigned long mips_io_port_base __read_mostly = -1; 69 EXPORT_SYMBOL(mips_io_port_base); 70 71 static struct resource code_resource = { .name = "Kernel code", }; 72 static struct resource data_resource = { .name = "Kernel data", }; 73 74 void __init add_memory_region(phys_t start, phys_t size, long type) 75 { 76 int x = boot_mem_map.nr_map; 77 struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1; 78 79 /* Sanity check */ 80 if (start + size < start) { 81 pr_warning("Trying to add an invalid memory region, skipped\n"); 82 return; 83 } 84 85 /* 86 * Try to merge with previous entry if any. This is far less than 87 * perfect but is sufficient for most real world cases. 88 */ 89 if (x && prev->addr + prev->size == start && prev->type == type) { 90 prev->size += size; 91 return; 92 } 93 94 if (x == BOOT_MEM_MAP_MAX) { 95 pr_err("Ooops! Too many entries in the memory map!\n"); 96 return; 97 } 98 99 boot_mem_map.map[x].addr = start; 100 boot_mem_map.map[x].size = size; 101 boot_mem_map.map[x].type = type; 102 boot_mem_map.nr_map++; 103 } 104 105 static void __init print_memory_map(void) 106 { 107 int i; 108 const int field = 2 * sizeof(unsigned long); 109 110 for (i = 0; i < boot_mem_map.nr_map; i++) { 111 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ", 112 field, (unsigned long long) boot_mem_map.map[i].size, 113 field, (unsigned long long) boot_mem_map.map[i].addr); 114 115 switch (boot_mem_map.map[i].type) { 116 case BOOT_MEM_RAM: 117 printk(KERN_CONT "(usable)\n"); 118 break; 119 case BOOT_MEM_ROM_DATA: 120 printk(KERN_CONT "(ROM data)\n"); 121 break; 122 case BOOT_MEM_RESERVED: 123 printk(KERN_CONT "(reserved)\n"); 124 break; 125 default: 126 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type); 127 break; 128 } 129 } 130 } 131 132 /* 133 * Manage initrd 134 */ 135 #ifdef CONFIG_BLK_DEV_INITRD 136 137 static int __init rd_start_early(char *p) 138 { 139 unsigned long start = memparse(p, &p); 140 141 #ifdef CONFIG_64BIT 142 /* Guess if the sign extension was forgotten by bootloader */ 143 if (start < XKPHYS) 144 start = (int)start; 145 #endif 146 initrd_start = start; 147 initrd_end += start; 148 return 0; 149 } 150 early_param("rd_start", rd_start_early); 151 152 static int __init rd_size_early(char *p) 153 { 154 initrd_end += memparse(p, &p); 155 return 0; 156 } 157 early_param("rd_size", rd_size_early); 158 159 /* it returns the next free pfn after initrd */ 160 static unsigned long __init init_initrd(void) 161 { 162 unsigned long end; 163 164 /* 165 * Board specific code or command line parser should have 166 * already set up initrd_start and initrd_end. In these cases 167 * perfom sanity checks and use them if all looks good. 168 */ 169 if (!initrd_start || initrd_end <= initrd_start) { 170 #ifdef CONFIG_PROBE_INITRD_HEADER 171 u32 *initrd_header; 172 173 /* 174 * See if initrd has been added to the kernel image by 175 * arch/mips/boot/addinitrd.c. In that case a header is 176 * prepended to initrd and is made up by 8 bytes. The first 177 * word is a magic number and the second one is the size of 178 * initrd. Initrd start must be page aligned in any cases. 179 */ 180 initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8; 181 if (initrd_header[0] != 0x494E5244) 182 goto disable; 183 initrd_start = (unsigned long)(initrd_header + 2); 184 initrd_end = initrd_start + initrd_header[1]; 185 #else 186 goto disable; 187 #endif 188 } 189 190 if (initrd_start & ~PAGE_MASK) { 191 pr_err("initrd start must be page aligned\n"); 192 goto disable; 193 } 194 if (initrd_start < PAGE_OFFSET) { 195 pr_err("initrd start < PAGE_OFFSET\n"); 196 goto disable; 197 } 198 199 /* 200 * Sanitize initrd addresses. For example firmware 201 * can't guess if they need to pass them through 202 * 64-bits values if the kernel has been built in pure 203 * 32-bit. We need also to switch from KSEG0 to XKPHYS 204 * addresses now, so the code can now safely use __pa(). 205 */ 206 end = __pa(initrd_end); 207 initrd_end = (unsigned long)__va(end); 208 initrd_start = (unsigned long)__va(__pa(initrd_start)); 209 210 ROOT_DEV = Root_RAM0; 211 return PFN_UP(end); 212 disable: 213 initrd_start = 0; 214 initrd_end = 0; 215 return 0; 216 } 217 218 static void __init finalize_initrd(void) 219 { 220 unsigned long size = initrd_end - initrd_start; 221 222 if (size == 0) { 223 printk(KERN_INFO "Initrd not found or empty"); 224 goto disable; 225 } 226 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { 227 printk(KERN_ERR "Initrd extends beyond end of memory"); 228 goto disable; 229 } 230 231 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT); 232 initrd_below_start_ok = 1; 233 234 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", 235 initrd_start, size); 236 return; 237 disable: 238 printk(KERN_CONT " - disabling initrd\n"); 239 initrd_start = 0; 240 initrd_end = 0; 241 } 242 243 #else /* !CONFIG_BLK_DEV_INITRD */ 244 245 static unsigned long __init init_initrd(void) 246 { 247 return 0; 248 } 249 250 #define finalize_initrd() do {} while (0) 251 252 #endif 253 254 /* 255 * Initialize the bootmem allocator. It also setup initrd related data 256 * if needed. 257 */ 258 #ifdef CONFIG_SGI_IP27 259 260 static void __init bootmem_init(void) 261 { 262 init_initrd(); 263 finalize_initrd(); 264 } 265 266 #else /* !CONFIG_SGI_IP27 */ 267 268 static void __init bootmem_init(void) 269 { 270 unsigned long reserved_end; 271 unsigned long mapstart = ~0UL; 272 unsigned long bootmap_size; 273 int i; 274 275 /* 276 * Init any data related to initrd. It's a nop if INITRD is 277 * not selected. Once that done we can determine the low bound 278 * of usable memory. 279 */ 280 reserved_end = max(init_initrd(), 281 (unsigned long) PFN_UP(__pa_symbol(&_end))); 282 283 /* 284 * max_low_pfn is not a number of pages. The number of pages 285 * of the system is given by 'max_low_pfn - min_low_pfn'. 286 */ 287 min_low_pfn = ~0UL; 288 max_low_pfn = 0; 289 290 /* 291 * Find the highest page frame number we have available. 292 */ 293 for (i = 0; i < boot_mem_map.nr_map; i++) { 294 unsigned long start, end; 295 296 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) 297 continue; 298 299 start = PFN_UP(boot_mem_map.map[i].addr); 300 end = PFN_DOWN(boot_mem_map.map[i].addr 301 + boot_mem_map.map[i].size); 302 303 if (end > max_low_pfn) 304 max_low_pfn = end; 305 if (start < min_low_pfn) 306 min_low_pfn = start; 307 if (end <= reserved_end) 308 continue; 309 if (start >= mapstart) 310 continue; 311 mapstart = max(reserved_end, start); 312 } 313 314 if (min_low_pfn >= max_low_pfn) 315 panic("Incorrect memory mapping !!!"); 316 if (min_low_pfn > ARCH_PFN_OFFSET) { 317 pr_info("Wasting %lu bytes for tracking %lu unused pages\n", 318 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page), 319 min_low_pfn - ARCH_PFN_OFFSET); 320 } else if (min_low_pfn < ARCH_PFN_OFFSET) { 321 pr_info("%lu free pages won't be used\n", 322 ARCH_PFN_OFFSET - min_low_pfn); 323 } 324 min_low_pfn = ARCH_PFN_OFFSET; 325 326 /* 327 * Determine low and high memory ranges 328 */ 329 max_pfn = max_low_pfn; 330 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { 331 #ifdef CONFIG_HIGHMEM 332 highstart_pfn = PFN_DOWN(HIGHMEM_START); 333 highend_pfn = max_low_pfn; 334 #endif 335 max_low_pfn = PFN_DOWN(HIGHMEM_START); 336 } 337 338 /* 339 * Initialize the boot-time allocator with low memory only. 340 */ 341 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart, 342 min_low_pfn, max_low_pfn); 343 344 345 for (i = 0; i < boot_mem_map.nr_map; i++) { 346 unsigned long start, end; 347 348 start = PFN_UP(boot_mem_map.map[i].addr); 349 end = PFN_DOWN(boot_mem_map.map[i].addr 350 + boot_mem_map.map[i].size); 351 352 if (start <= min_low_pfn) 353 start = min_low_pfn; 354 if (start >= end) 355 continue; 356 357 #ifndef CONFIG_HIGHMEM 358 if (end > max_low_pfn) 359 end = max_low_pfn; 360 361 /* 362 * ... finally, is the area going away? 363 */ 364 if (end <= start) 365 continue; 366 #endif 367 368 add_active_range(0, start, end); 369 } 370 371 /* 372 * Register fully available low RAM pages with the bootmem allocator. 373 */ 374 for (i = 0; i < boot_mem_map.nr_map; i++) { 375 unsigned long start, end, size; 376 377 /* 378 * Reserve usable memory. 379 */ 380 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) 381 continue; 382 383 start = PFN_UP(boot_mem_map.map[i].addr); 384 end = PFN_DOWN(boot_mem_map.map[i].addr 385 + boot_mem_map.map[i].size); 386 /* 387 * We are rounding up the start address of usable memory 388 * and at the end of the usable range downwards. 389 */ 390 if (start >= max_low_pfn) 391 continue; 392 if (start < reserved_end) 393 start = reserved_end; 394 if (end > max_low_pfn) 395 end = max_low_pfn; 396 397 /* 398 * ... finally, is the area going away? 399 */ 400 if (end <= start) 401 continue; 402 size = end - start; 403 404 /* Register lowmem ranges */ 405 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT); 406 memory_present(0, start, end); 407 } 408 409 /* 410 * Reserve the bootmap memory. 411 */ 412 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT); 413 414 /* 415 * Reserve initrd memory if needed. 416 */ 417 finalize_initrd(); 418 } 419 420 #endif /* CONFIG_SGI_IP27 */ 421 422 /* 423 * arch_mem_init - initialize memory management subsystem 424 * 425 * o plat_mem_setup() detects the memory configuration and will record detected 426 * memory areas using add_memory_region. 427 * 428 * At this stage the memory configuration of the system is known to the 429 * kernel but generic memory management system is still entirely uninitialized. 430 * 431 * o bootmem_init() 432 * o sparse_init() 433 * o paging_init() 434 * 435 * At this stage the bootmem allocator is ready to use. 436 * 437 * NOTE: historically plat_mem_setup did the entire platform initialization. 438 * This was rather impractical because it meant plat_mem_setup had to 439 * get away without any kind of memory allocator. To keep old code from 440 * breaking plat_setup was just renamed to plat_setup and a second platform 441 * initialization hook for anything else was introduced. 442 */ 443 444 static int usermem __initdata = 0; 445 446 static int __init early_parse_mem(char *p) 447 { 448 unsigned long start, size; 449 450 /* 451 * If a user specifies memory size, we 452 * blow away any automatically generated 453 * size. 454 */ 455 if (usermem == 0) { 456 boot_mem_map.nr_map = 0; 457 usermem = 1; 458 } 459 start = 0; 460 size = memparse(p, &p); 461 if (*p == '@') 462 start = memparse(p + 1, &p); 463 464 add_memory_region(start, size, BOOT_MEM_RAM); 465 return 0; 466 } 467 early_param("mem", early_parse_mem); 468 469 static void __init arch_mem_init(char **cmdline_p) 470 { 471 extern void plat_mem_setup(void); 472 473 /* call board setup routine */ 474 plat_mem_setup(); 475 476 pr_info("Determined physical RAM map:\n"); 477 print_memory_map(); 478 479 strlcpy(command_line, arcs_cmdline, sizeof(command_line)); 480 strlcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); 481 482 *cmdline_p = command_line; 483 484 parse_early_param(); 485 486 if (usermem) { 487 pr_info("User-defined physical RAM map:\n"); 488 print_memory_map(); 489 } 490 491 bootmem_init(); 492 sparse_init(); 493 paging_init(); 494 } 495 496 static void __init resource_init(void) 497 { 498 int i; 499 500 if (UNCAC_BASE != IO_BASE) 501 return; 502 503 code_resource.start = __pa_symbol(&_text); 504 code_resource.end = __pa_symbol(&_etext) - 1; 505 data_resource.start = __pa_symbol(&_etext); 506 data_resource.end = __pa_symbol(&_edata) - 1; 507 508 /* 509 * Request address space for all standard RAM. 510 */ 511 for (i = 0; i < boot_mem_map.nr_map; i++) { 512 struct resource *res; 513 unsigned long start, end; 514 515 start = boot_mem_map.map[i].addr; 516 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; 517 if (start >= HIGHMEM_START) 518 continue; 519 if (end >= HIGHMEM_START) 520 end = HIGHMEM_START - 1; 521 522 res = alloc_bootmem(sizeof(struct resource)); 523 switch (boot_mem_map.map[i].type) { 524 case BOOT_MEM_RAM: 525 case BOOT_MEM_ROM_DATA: 526 res->name = "System RAM"; 527 break; 528 case BOOT_MEM_RESERVED: 529 default: 530 res->name = "reserved"; 531 } 532 533 res->start = start; 534 res->end = end; 535 536 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 537 request_resource(&iomem_resource, res); 538 539 /* 540 * We don't know which RAM region contains kernel data, 541 * so we try it repeatedly and let the resource manager 542 * test it. 543 */ 544 request_resource(res, &code_resource); 545 request_resource(res, &data_resource); 546 } 547 } 548 549 void __init setup_arch(char **cmdline_p) 550 { 551 cpu_probe(); 552 prom_init(); 553 554 #ifdef CONFIG_EARLY_PRINTK 555 setup_early_printk(); 556 #endif 557 cpu_report(); 558 check_bugs_early(); 559 560 #if defined(CONFIG_VT) 561 #if defined(CONFIG_VGA_CONSOLE) 562 conswitchp = &vga_con; 563 #elif defined(CONFIG_DUMMY_CONSOLE) 564 conswitchp = &dummy_con; 565 #endif 566 #endif 567 568 arch_mem_init(cmdline_p); 569 570 resource_init(); 571 plat_smp_setup(); 572 } 573 574 static int __init fpu_disable(char *s) 575 { 576 int i; 577 578 for (i = 0; i < NR_CPUS; i++) 579 cpu_data[i].options &= ~MIPS_CPU_FPU; 580 581 return 1; 582 } 583 584 __setup("nofpu", fpu_disable); 585 586 static int __init dsp_disable(char *s) 587 { 588 cpu_data[0].ases &= ~MIPS_ASE_DSP; 589 590 return 1; 591 } 592 593 __setup("nodsp", dsp_disable); 594 595 unsigned long kernelsp[NR_CPUS]; 596 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; 597 598 #ifdef CONFIG_DEBUG_FS 599 struct dentry *mips_debugfs_dir; 600 static int __init debugfs_mips(void) 601 { 602 struct dentry *d; 603 604 d = debugfs_create_dir("mips", NULL); 605 if (!d) 606 return -ENOMEM; 607 mips_debugfs_dir = d; 608 return 0; 609 } 610 arch_initcall(debugfs_mips); 611 #endif 612