xref: /openbmc/linux/arch/mips/kernel/setup.c (revision a1e58bbd)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/module.h>
16 #include <linux/screen_info.h>
17 #include <linux/bootmem.h>
18 #include <linux/initrd.h>
19 #include <linux/root_dev.h>
20 #include <linux/highmem.h>
21 #include <linux/console.h>
22 #include <linux/pfn.h>
23 #include <linux/debugfs.h>
24 
25 #include <asm/addrspace.h>
26 #include <asm/bootinfo.h>
27 #include <asm/bugs.h>
28 #include <asm/cache.h>
29 #include <asm/cpu.h>
30 #include <asm/sections.h>
31 #include <asm/setup.h>
32 #include <asm/smp-ops.h>
33 #include <asm/system.h>
34 
35 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
36 
37 EXPORT_SYMBOL(cpu_data);
38 
39 #ifdef CONFIG_VT
40 struct screen_info screen_info;
41 #endif
42 
43 /*
44  * Despite it's name this variable is even if we don't have PCI
45  */
46 unsigned int PCI_DMA_BUS_IS_PHYS;
47 
48 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
49 
50 /*
51  * Setup information
52  *
53  * These are initialized so they are in the .data section
54  */
55 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
56 
57 EXPORT_SYMBOL(mips_machtype);
58 
59 struct boot_mem_map boot_mem_map;
60 
61 static char command_line[CL_SIZE];
62        char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE;
63 
64 /*
65  * mips_io_port_base is the begin of the address space to which x86 style
66  * I/O ports are mapped.
67  */
68 const unsigned long mips_io_port_base __read_mostly = -1;
69 EXPORT_SYMBOL(mips_io_port_base);
70 
71 /*
72  * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
73  * for the processor.
74  */
75 unsigned long isa_slot_offset;
76 EXPORT_SYMBOL(isa_slot_offset);
77 
78 static struct resource code_resource = { .name = "Kernel code", };
79 static struct resource data_resource = { .name = "Kernel data", };
80 
81 void __init add_memory_region(phys_t start, phys_t size, long type)
82 {
83 	int x = boot_mem_map.nr_map;
84 	struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
85 
86 	/* Sanity check */
87 	if (start + size < start) {
88 		printk("Trying to add an invalid memory region, skipped\n");
89 		return;
90 	}
91 
92 	/*
93 	 * Try to merge with previous entry if any.  This is far less than
94 	 * perfect but is sufficient for most real world cases.
95 	 */
96 	if (x && prev->addr + prev->size == start && prev->type == type) {
97 		prev->size += size;
98 		return;
99 	}
100 
101 	if (x == BOOT_MEM_MAP_MAX) {
102 		printk("Ooops! Too many entries in the memory map!\n");
103 		return;
104 	}
105 
106 	boot_mem_map.map[x].addr = start;
107 	boot_mem_map.map[x].size = size;
108 	boot_mem_map.map[x].type = type;
109 	boot_mem_map.nr_map++;
110 }
111 
112 static void __init print_memory_map(void)
113 {
114 	int i;
115 	const int field = 2 * sizeof(unsigned long);
116 
117 	for (i = 0; i < boot_mem_map.nr_map; i++) {
118 		printk(" memory: %0*Lx @ %0*Lx ",
119 		       field, (unsigned long long) boot_mem_map.map[i].size,
120 		       field, (unsigned long long) boot_mem_map.map[i].addr);
121 
122 		switch (boot_mem_map.map[i].type) {
123 		case BOOT_MEM_RAM:
124 			printk("(usable)\n");
125 			break;
126 		case BOOT_MEM_ROM_DATA:
127 			printk("(ROM data)\n");
128 			break;
129 		case BOOT_MEM_RESERVED:
130 			printk("(reserved)\n");
131 			break;
132 		default:
133 			printk("type %lu\n", boot_mem_map.map[i].type);
134 			break;
135 		}
136 	}
137 }
138 
139 /*
140  * Manage initrd
141  */
142 #ifdef CONFIG_BLK_DEV_INITRD
143 
144 static int __init rd_start_early(char *p)
145 {
146 	unsigned long start = memparse(p, &p);
147 
148 #ifdef CONFIG_64BIT
149 	/* Guess if the sign extension was forgotten by bootloader */
150 	if (start < XKPHYS)
151 		start = (int)start;
152 #endif
153 	initrd_start = start;
154 	initrd_end += start;
155 	return 0;
156 }
157 early_param("rd_start", rd_start_early);
158 
159 static int __init rd_size_early(char *p)
160 {
161 	initrd_end += memparse(p, &p);
162 	return 0;
163 }
164 early_param("rd_size", rd_size_early);
165 
166 /* it returns the next free pfn after initrd */
167 static unsigned long __init init_initrd(void)
168 {
169 	unsigned long end;
170 	u32 *initrd_header;
171 
172 	/*
173 	 * Board specific code or command line parser should have
174 	 * already set up initrd_start and initrd_end. In these cases
175 	 * perfom sanity checks and use them if all looks good.
176 	 */
177 	if (initrd_start && initrd_end > initrd_start)
178 		goto sanitize;
179 
180 	/*
181 	 * See if initrd has been added to the kernel image by
182 	 * arch/mips/boot/addinitrd.c. In that case a header is
183 	 * prepended to initrd and is made up by 8 bytes. The fisrt
184 	 * word is a magic number and the second one is the size of
185 	 * initrd.  Initrd start must be page aligned in any cases.
186 	 */
187 	initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8;
188 	if (initrd_header[0] != 0x494E5244)
189 		goto disable;
190 	initrd_start = (unsigned long)(initrd_header + 2);
191 	initrd_end = initrd_start + initrd_header[1];
192 
193 sanitize:
194 	if (initrd_start & ~PAGE_MASK) {
195 		printk(KERN_ERR "initrd start must be page aligned\n");
196 		goto disable;
197 	}
198 	if (initrd_start < PAGE_OFFSET) {
199 		printk(KERN_ERR "initrd start < PAGE_OFFSET\n");
200 		goto disable;
201 	}
202 
203 	/*
204 	 * Sanitize initrd addresses. For example firmware
205 	 * can't guess if they need to pass them through
206 	 * 64-bits values if the kernel has been built in pure
207 	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
208 	 * addresses now, so the code can now safely use __pa().
209 	 */
210 	end = __pa(initrd_end);
211 	initrd_end = (unsigned long)__va(end);
212 	initrd_start = (unsigned long)__va(__pa(initrd_start));
213 
214 	ROOT_DEV = Root_RAM0;
215 	return PFN_UP(end);
216 disable:
217 	initrd_start = 0;
218 	initrd_end = 0;
219 	return 0;
220 }
221 
222 static void __init finalize_initrd(void)
223 {
224 	unsigned long size = initrd_end - initrd_start;
225 
226 	if (size == 0) {
227 		printk(KERN_INFO "Initrd not found or empty");
228 		goto disable;
229 	}
230 	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
231 		printk("Initrd extends beyond end of memory");
232 		goto disable;
233 	}
234 
235 	reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
236 	initrd_below_start_ok = 1;
237 
238 	printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
239 	       initrd_start, size);
240 	return;
241 disable:
242 	printk(" - disabling initrd\n");
243 	initrd_start = 0;
244 	initrd_end = 0;
245 }
246 
247 #else  /* !CONFIG_BLK_DEV_INITRD */
248 
249 static unsigned long __init init_initrd(void)
250 {
251 	return 0;
252 }
253 
254 #define finalize_initrd()	do {} while (0)
255 
256 #endif
257 
258 /*
259  * Initialize the bootmem allocator. It also setup initrd related data
260  * if needed.
261  */
262 #ifdef CONFIG_SGI_IP27
263 
264 static void __init bootmem_init(void)
265 {
266 	init_initrd();
267 	finalize_initrd();
268 }
269 
270 #else  /* !CONFIG_SGI_IP27 */
271 
272 static void __init bootmem_init(void)
273 {
274 	unsigned long reserved_end;
275 	unsigned long mapstart = ~0UL;
276 	unsigned long bootmap_size;
277 	int i;
278 
279 	/*
280 	 * Init any data related to initrd. It's a nop if INITRD is
281 	 * not selected. Once that done we can determine the low bound
282 	 * of usable memory.
283 	 */
284 	reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end)));
285 
286 	/*
287 	 * max_low_pfn is not a number of pages. The number of pages
288 	 * of the system is given by 'max_low_pfn - min_low_pfn'.
289 	 */
290 	min_low_pfn = ~0UL;
291 	max_low_pfn = 0;
292 
293 	/*
294 	 * Find the highest page frame number we have available.
295 	 */
296 	for (i = 0; i < boot_mem_map.nr_map; i++) {
297 		unsigned long start, end;
298 
299 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
300 			continue;
301 
302 		start = PFN_UP(boot_mem_map.map[i].addr);
303 		end = PFN_DOWN(boot_mem_map.map[i].addr
304 				+ boot_mem_map.map[i].size);
305 
306 		if (end > max_low_pfn)
307 			max_low_pfn = end;
308 		if (start < min_low_pfn)
309 			min_low_pfn = start;
310 		if (end <= reserved_end)
311 			continue;
312 		if (start >= mapstart)
313 			continue;
314 		mapstart = max(reserved_end, start);
315 	}
316 
317 	if (min_low_pfn >= max_low_pfn)
318 		panic("Incorrect memory mapping !!!");
319 	if (min_low_pfn > ARCH_PFN_OFFSET) {
320 		printk(KERN_INFO
321 		       "Wasting %lu bytes for tracking %lu unused pages\n",
322 		       (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
323 		       min_low_pfn - ARCH_PFN_OFFSET);
324 	} else if (min_low_pfn < ARCH_PFN_OFFSET) {
325 		printk(KERN_INFO
326 		       "%lu free pages won't be used\n",
327 		       ARCH_PFN_OFFSET - min_low_pfn);
328 	}
329 	min_low_pfn = ARCH_PFN_OFFSET;
330 
331 	/*
332 	 * Determine low and high memory ranges
333 	 */
334 	if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
335 #ifdef CONFIG_HIGHMEM
336 		highstart_pfn = PFN_DOWN(HIGHMEM_START);
337 		highend_pfn = max_low_pfn;
338 #endif
339 		max_low_pfn = PFN_DOWN(HIGHMEM_START);
340 	}
341 
342 	/*
343 	 * Initialize the boot-time allocator with low memory only.
344 	 */
345 	bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
346 					 min_low_pfn, max_low_pfn);
347 
348 
349 	for (i = 0; i < boot_mem_map.nr_map; i++) {
350 		unsigned long start, end;
351 
352 		start = PFN_UP(boot_mem_map.map[i].addr);
353 		end = PFN_DOWN(boot_mem_map.map[i].addr
354 				+ boot_mem_map.map[i].size);
355 
356 		if (start <= min_low_pfn)
357 			start = min_low_pfn;
358 		if (start >= end)
359 			continue;
360 
361 #ifndef CONFIG_HIGHMEM
362 		if (end > max_low_pfn)
363 			end = max_low_pfn;
364 
365 		/*
366 		 * ... finally, is the area going away?
367 		 */
368 		if (end <= start)
369 			continue;
370 #endif
371 
372 		add_active_range(0, start, end);
373 	}
374 
375 	/*
376 	 * Register fully available low RAM pages with the bootmem allocator.
377 	 */
378 	for (i = 0; i < boot_mem_map.nr_map; i++) {
379 		unsigned long start, end, size;
380 
381 		/*
382 		 * Reserve usable memory.
383 		 */
384 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
385 			continue;
386 
387 		start = PFN_UP(boot_mem_map.map[i].addr);
388 		end   = PFN_DOWN(boot_mem_map.map[i].addr
389 				    + boot_mem_map.map[i].size);
390 		/*
391 		 * We are rounding up the start address of usable memory
392 		 * and at the end of the usable range downwards.
393 		 */
394 		if (start >= max_low_pfn)
395 			continue;
396 		if (start < reserved_end)
397 			start = reserved_end;
398 		if (end > max_low_pfn)
399 			end = max_low_pfn;
400 
401 		/*
402 		 * ... finally, is the area going away?
403 		 */
404 		if (end <= start)
405 			continue;
406 		size = end - start;
407 
408 		/* Register lowmem ranges */
409 		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
410 		memory_present(0, start, end);
411 	}
412 
413 	/*
414 	 * Reserve the bootmap memory.
415 	 */
416 	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
417 
418 	/*
419 	 * Reserve initrd memory if needed.
420 	 */
421 	finalize_initrd();
422 }
423 
424 #endif	/* CONFIG_SGI_IP27 */
425 
426 /*
427  * arch_mem_init - initialize memory management subsystem
428  *
429  *  o plat_mem_setup() detects the memory configuration and will record detected
430  *    memory areas using add_memory_region.
431  *
432  * At this stage the memory configuration of the system is known to the
433  * kernel but generic memory management system is still entirely uninitialized.
434  *
435  *  o bootmem_init()
436  *  o sparse_init()
437  *  o paging_init()
438  *
439  * At this stage the bootmem allocator is ready to use.
440  *
441  * NOTE: historically plat_mem_setup did the entire platform initialization.
442  *       This was rather impractical because it meant plat_mem_setup had to
443  * get away without any kind of memory allocator.  To keep old code from
444  * breaking plat_setup was just renamed to plat_setup and a second platform
445  * initialization hook for anything else was introduced.
446  */
447 
448 static int usermem __initdata = 0;
449 
450 static int __init early_parse_mem(char *p)
451 {
452 	unsigned long start, size;
453 
454 	/*
455 	 * If a user specifies memory size, we
456 	 * blow away any automatically generated
457 	 * size.
458 	 */
459 	if (usermem == 0) {
460 		boot_mem_map.nr_map = 0;
461 		usermem = 1;
462  	}
463 	start = 0;
464 	size = memparse(p, &p);
465 	if (*p == '@')
466 		start = memparse(p + 1, &p);
467 
468 	add_memory_region(start, size, BOOT_MEM_RAM);
469 	return 0;
470 }
471 early_param("mem", early_parse_mem);
472 
473 static void __init arch_mem_init(char **cmdline_p)
474 {
475 	extern void plat_mem_setup(void);
476 
477 	/* call board setup routine */
478 	plat_mem_setup();
479 
480 	printk("Determined physical RAM map:\n");
481 	print_memory_map();
482 
483 	strlcpy(command_line, arcs_cmdline, sizeof(command_line));
484 	strlcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
485 
486 	*cmdline_p = command_line;
487 
488 	parse_early_param();
489 
490 	if (usermem) {
491 		printk("User-defined physical RAM map:\n");
492 		print_memory_map();
493 	}
494 
495 	bootmem_init();
496 	sparse_init();
497 	paging_init();
498 }
499 
500 static void __init resource_init(void)
501 {
502 	int i;
503 
504 	if (UNCAC_BASE != IO_BASE)
505 		return;
506 
507 	code_resource.start = __pa_symbol(&_text);
508 	code_resource.end = __pa_symbol(&_etext) - 1;
509 	data_resource.start = __pa_symbol(&_etext);
510 	data_resource.end = __pa_symbol(&_edata) - 1;
511 
512 	/*
513 	 * Request address space for all standard RAM.
514 	 */
515 	for (i = 0; i < boot_mem_map.nr_map; i++) {
516 		struct resource *res;
517 		unsigned long start, end;
518 
519 		start = boot_mem_map.map[i].addr;
520 		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
521 		if (start >= HIGHMEM_START)
522 			continue;
523 		if (end >= HIGHMEM_START)
524 			end = HIGHMEM_START - 1;
525 
526 		res = alloc_bootmem(sizeof(struct resource));
527 		switch (boot_mem_map.map[i].type) {
528 		case BOOT_MEM_RAM:
529 		case BOOT_MEM_ROM_DATA:
530 			res->name = "System RAM";
531 			break;
532 		case BOOT_MEM_RESERVED:
533 		default:
534 			res->name = "reserved";
535 		}
536 
537 		res->start = start;
538 		res->end = end;
539 
540 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
541 		request_resource(&iomem_resource, res);
542 
543 		/*
544 		 *  We don't know which RAM region contains kernel data,
545 		 *  so we try it repeatedly and let the resource manager
546 		 *  test it.
547 		 */
548 		request_resource(res, &code_resource);
549 		request_resource(res, &data_resource);
550 	}
551 }
552 
553 void __init setup_arch(char **cmdline_p)
554 {
555 	cpu_probe();
556 	prom_init();
557 
558 #ifdef CONFIG_EARLY_PRINTK
559 	{
560 		extern void setup_early_printk(void);
561 
562 		setup_early_printk();
563 	}
564 #endif
565 	cpu_report();
566 	check_bugs_early();
567 
568 #if defined(CONFIG_VT)
569 #if defined(CONFIG_VGA_CONSOLE)
570 	conswitchp = &vga_con;
571 #elif defined(CONFIG_DUMMY_CONSOLE)
572 	conswitchp = &dummy_con;
573 #endif
574 #endif
575 
576 	arch_mem_init(cmdline_p);
577 
578 	resource_init();
579 	plat_smp_setup();
580 }
581 
582 static int __init fpu_disable(char *s)
583 {
584 	int i;
585 
586 	for (i = 0; i < NR_CPUS; i++)
587 		cpu_data[i].options &= ~MIPS_CPU_FPU;
588 
589 	return 1;
590 }
591 
592 __setup("nofpu", fpu_disable);
593 
594 static int __init dsp_disable(char *s)
595 {
596 	cpu_data[0].ases &= ~MIPS_ASE_DSP;
597 
598 	return 1;
599 }
600 
601 __setup("nodsp", dsp_disable);
602 
603 unsigned long kernelsp[NR_CPUS];
604 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
605 
606 #ifdef CONFIG_DEBUG_FS
607 struct dentry *mips_debugfs_dir;
608 static int __init debugfs_mips(void)
609 {
610 	struct dentry *d;
611 
612 	d = debugfs_create_dir("mips", NULL);
613 	if (IS_ERR(d))
614 		return PTR_ERR(d);
615 	mips_debugfs_dir = d;
616 	return 0;
617 }
618 arch_initcall(debugfs_mips);
619 #endif
620