xref: /openbmc/linux/arch/mips/kernel/setup.c (revision 9dae47aba0a055f761176d9297371d5bb24289ec)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007	 Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 #include <linux/kexec.h>
26 #include <linux/sizes.h>
27 #include <linux/device.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/decompress/generic.h>
30 #include <linux/of_fdt.h>
31 
32 #include <asm/addrspace.h>
33 #include <asm/bootinfo.h>
34 #include <asm/bugs.h>
35 #include <asm/cache.h>
36 #include <asm/cdmm.h>
37 #include <asm/cpu.h>
38 #include <asm/debug.h>
39 #include <asm/sections.h>
40 #include <asm/setup.h>
41 #include <asm/smp-ops.h>
42 #include <asm/prom.h>
43 
44 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
45 const char __section(.appended_dtb) __appended_dtb[0x100000];
46 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
47 
48 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
49 
50 EXPORT_SYMBOL(cpu_data);
51 
52 #ifdef CONFIG_VT
53 struct screen_info screen_info;
54 #endif
55 
56 /*
57  * Setup information
58  *
59  * These are initialized so they are in the .data section
60  */
61 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
62 
63 EXPORT_SYMBOL(mips_machtype);
64 
65 struct boot_mem_map boot_mem_map;
66 
67 static char __initdata command_line[COMMAND_LINE_SIZE];
68 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
69 
70 #ifdef CONFIG_CMDLINE_BOOL
71 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
72 #endif
73 
74 /*
75  * mips_io_port_base is the begin of the address space to which x86 style
76  * I/O ports are mapped.
77  */
78 const unsigned long mips_io_port_base = -1;
79 EXPORT_SYMBOL(mips_io_port_base);
80 
81 static struct resource code_resource = { .name = "Kernel code", };
82 static struct resource data_resource = { .name = "Kernel data", };
83 static struct resource bss_resource = { .name = "Kernel bss", };
84 
85 static void *detect_magic __initdata = detect_memory_region;
86 
87 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
88 {
89 	int x = boot_mem_map.nr_map;
90 	int i;
91 
92 	/*
93 	 * If the region reaches the top of the physical address space, adjust
94 	 * the size slightly so that (start + size) doesn't overflow
95 	 */
96 	if (start + size - 1 == (phys_addr_t)ULLONG_MAX)
97 		--size;
98 
99 	/* Sanity check */
100 	if (start + size < start) {
101 		pr_warn("Trying to add an invalid memory region, skipped\n");
102 		return;
103 	}
104 
105 	/*
106 	 * Try to merge with existing entry, if any.
107 	 */
108 	for (i = 0; i < boot_mem_map.nr_map; i++) {
109 		struct boot_mem_map_entry *entry = boot_mem_map.map + i;
110 		unsigned long top;
111 
112 		if (entry->type != type)
113 			continue;
114 
115 		if (start + size < entry->addr)
116 			continue;			/* no overlap */
117 
118 		if (entry->addr + entry->size < start)
119 			continue;			/* no overlap */
120 
121 		top = max(entry->addr + entry->size, start + size);
122 		entry->addr = min(entry->addr, start);
123 		entry->size = top - entry->addr;
124 
125 		return;
126 	}
127 
128 	if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
129 		pr_err("Ooops! Too many entries in the memory map!\n");
130 		return;
131 	}
132 
133 	boot_mem_map.map[x].addr = start;
134 	boot_mem_map.map[x].size = size;
135 	boot_mem_map.map[x].type = type;
136 	boot_mem_map.nr_map++;
137 }
138 
139 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
140 {
141 	void *dm = &detect_magic;
142 	phys_addr_t size;
143 
144 	for (size = sz_min; size < sz_max; size <<= 1) {
145 		if (!memcmp(dm, dm + size, sizeof(detect_magic)))
146 			break;
147 	}
148 
149 	pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
150 		((unsigned long long) size) / SZ_1M,
151 		(unsigned long long) start,
152 		((unsigned long long) sz_min) / SZ_1M,
153 		((unsigned long long) sz_max) / SZ_1M);
154 
155 	add_memory_region(start, size, BOOT_MEM_RAM);
156 }
157 
158 bool __init memory_region_available(phys_addr_t start, phys_addr_t size)
159 {
160 	int i;
161 	bool in_ram = false, free = true;
162 
163 	for (i = 0; i < boot_mem_map.nr_map; i++) {
164 		phys_addr_t start_, end_;
165 
166 		start_ = boot_mem_map.map[i].addr;
167 		end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size;
168 
169 		switch (boot_mem_map.map[i].type) {
170 		case BOOT_MEM_RAM:
171 			if (start >= start_ && start + size <= end_)
172 				in_ram = true;
173 			break;
174 		case BOOT_MEM_RESERVED:
175 			if ((start >= start_ && start < end_) ||
176 			    (start < start_ && start + size >= start_))
177 				free = false;
178 			break;
179 		default:
180 			continue;
181 		}
182 	}
183 
184 	return in_ram && free;
185 }
186 
187 static void __init print_memory_map(void)
188 {
189 	int i;
190 	const int field = 2 * sizeof(unsigned long);
191 
192 	for (i = 0; i < boot_mem_map.nr_map; i++) {
193 		printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
194 		       field, (unsigned long long) boot_mem_map.map[i].size,
195 		       field, (unsigned long long) boot_mem_map.map[i].addr);
196 
197 		switch (boot_mem_map.map[i].type) {
198 		case BOOT_MEM_RAM:
199 			printk(KERN_CONT "(usable)\n");
200 			break;
201 		case BOOT_MEM_INIT_RAM:
202 			printk(KERN_CONT "(usable after init)\n");
203 			break;
204 		case BOOT_MEM_ROM_DATA:
205 			printk(KERN_CONT "(ROM data)\n");
206 			break;
207 		case BOOT_MEM_RESERVED:
208 			printk(KERN_CONT "(reserved)\n");
209 			break;
210 		default:
211 			printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
212 			break;
213 		}
214 	}
215 }
216 
217 /*
218  * Manage initrd
219  */
220 #ifdef CONFIG_BLK_DEV_INITRD
221 
222 static int __init rd_start_early(char *p)
223 {
224 	unsigned long start = memparse(p, &p);
225 
226 #ifdef CONFIG_64BIT
227 	/* Guess if the sign extension was forgotten by bootloader */
228 	if (start < XKPHYS)
229 		start = (int)start;
230 #endif
231 	initrd_start = start;
232 	initrd_end += start;
233 	return 0;
234 }
235 early_param("rd_start", rd_start_early);
236 
237 static int __init rd_size_early(char *p)
238 {
239 	initrd_end += memparse(p, &p);
240 	return 0;
241 }
242 early_param("rd_size", rd_size_early);
243 
244 /* it returns the next free pfn after initrd */
245 static unsigned long __init init_initrd(void)
246 {
247 	unsigned long end;
248 
249 	/*
250 	 * Board specific code or command line parser should have
251 	 * already set up initrd_start and initrd_end. In these cases
252 	 * perfom sanity checks and use them if all looks good.
253 	 */
254 	if (!initrd_start || initrd_end <= initrd_start)
255 		goto disable;
256 
257 	if (initrd_start & ~PAGE_MASK) {
258 		pr_err("initrd start must be page aligned\n");
259 		goto disable;
260 	}
261 	if (initrd_start < PAGE_OFFSET) {
262 		pr_err("initrd start < PAGE_OFFSET\n");
263 		goto disable;
264 	}
265 
266 	/*
267 	 * Sanitize initrd addresses. For example firmware
268 	 * can't guess if they need to pass them through
269 	 * 64-bits values if the kernel has been built in pure
270 	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
271 	 * addresses now, so the code can now safely use __pa().
272 	 */
273 	end = __pa(initrd_end);
274 	initrd_end = (unsigned long)__va(end);
275 	initrd_start = (unsigned long)__va(__pa(initrd_start));
276 
277 	ROOT_DEV = Root_RAM0;
278 	return PFN_UP(end);
279 disable:
280 	initrd_start = 0;
281 	initrd_end = 0;
282 	return 0;
283 }
284 
285 /* In some conditions (e.g. big endian bootloader with a little endian
286    kernel), the initrd might appear byte swapped.  Try to detect this and
287    byte swap it if needed.  */
288 static void __init maybe_bswap_initrd(void)
289 {
290 #if defined(CONFIG_CPU_CAVIUM_OCTEON)
291 	u64 buf;
292 
293 	/* Check for CPIO signature */
294 	if (!memcmp((void *)initrd_start, "070701", 6))
295 		return;
296 
297 	/* Check for compressed initrd */
298 	if (decompress_method((unsigned char *)initrd_start, 8, NULL))
299 		return;
300 
301 	/* Try again with a byte swapped header */
302 	buf = swab64p((u64 *)initrd_start);
303 	if (!memcmp(&buf, "070701", 6) ||
304 	    decompress_method((unsigned char *)(&buf), 8, NULL)) {
305 		unsigned long i;
306 
307 		pr_info("Byteswapped initrd detected\n");
308 		for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
309 			swab64s((u64 *)i);
310 	}
311 #endif
312 }
313 
314 static void __init finalize_initrd(void)
315 {
316 	unsigned long size = initrd_end - initrd_start;
317 
318 	if (size == 0) {
319 		printk(KERN_INFO "Initrd not found or empty");
320 		goto disable;
321 	}
322 	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
323 		printk(KERN_ERR "Initrd extends beyond end of memory");
324 		goto disable;
325 	}
326 
327 	maybe_bswap_initrd();
328 
329 	reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
330 	initrd_below_start_ok = 1;
331 
332 	pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
333 		initrd_start, size);
334 	return;
335 disable:
336 	printk(KERN_CONT " - disabling initrd\n");
337 	initrd_start = 0;
338 	initrd_end = 0;
339 }
340 
341 #else  /* !CONFIG_BLK_DEV_INITRD */
342 
343 static unsigned long __init init_initrd(void)
344 {
345 	return 0;
346 }
347 
348 #define finalize_initrd()	do {} while (0)
349 
350 #endif
351 
352 /*
353  * Initialize the bootmem allocator. It also setup initrd related data
354  * if needed.
355  */
356 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
357 
358 static void __init bootmem_init(void)
359 {
360 	init_initrd();
361 	finalize_initrd();
362 }
363 
364 #else  /* !CONFIG_SGI_IP27 */
365 
366 static unsigned long __init bootmap_bytes(unsigned long pages)
367 {
368 	unsigned long bytes = DIV_ROUND_UP(pages, 8);
369 
370 	return ALIGN(bytes, sizeof(long));
371 }
372 
373 static void __init bootmem_init(void)
374 {
375 	unsigned long reserved_end;
376 	unsigned long mapstart = ~0UL;
377 	unsigned long bootmap_size;
378 	bool bootmap_valid = false;
379 	int i;
380 
381 	/*
382 	 * Sanity check any INITRD first. We don't take it into account
383 	 * for bootmem setup initially, rely on the end-of-kernel-code
384 	 * as our memory range starting point. Once bootmem is inited we
385 	 * will reserve the area used for the initrd.
386 	 */
387 	init_initrd();
388 	reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
389 
390 	/*
391 	 * max_low_pfn is not a number of pages. The number of pages
392 	 * of the system is given by 'max_low_pfn - min_low_pfn'.
393 	 */
394 	min_low_pfn = ~0UL;
395 	max_low_pfn = 0;
396 
397 	/*
398 	 * Find the highest page frame number we have available.
399 	 */
400 	for (i = 0; i < boot_mem_map.nr_map; i++) {
401 		unsigned long start, end;
402 
403 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
404 			continue;
405 
406 		start = PFN_UP(boot_mem_map.map[i].addr);
407 		end = PFN_DOWN(boot_mem_map.map[i].addr
408 				+ boot_mem_map.map[i].size);
409 
410 #ifndef CONFIG_HIGHMEM
411 		/*
412 		 * Skip highmem here so we get an accurate max_low_pfn if low
413 		 * memory stops short of high memory.
414 		 * If the region overlaps HIGHMEM_START, end is clipped so
415 		 * max_pfn excludes the highmem portion.
416 		 */
417 		if (start >= PFN_DOWN(HIGHMEM_START))
418 			continue;
419 		if (end > PFN_DOWN(HIGHMEM_START))
420 			end = PFN_DOWN(HIGHMEM_START);
421 #endif
422 
423 		if (end > max_low_pfn)
424 			max_low_pfn = end;
425 		if (start < min_low_pfn)
426 			min_low_pfn = start;
427 		if (end <= reserved_end)
428 			continue;
429 #ifdef CONFIG_BLK_DEV_INITRD
430 		/* Skip zones before initrd and initrd itself */
431 		if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
432 			continue;
433 #endif
434 		if (start >= mapstart)
435 			continue;
436 		mapstart = max(reserved_end, start);
437 	}
438 
439 	if (min_low_pfn >= max_low_pfn)
440 		panic("Incorrect memory mapping !!!");
441 	if (min_low_pfn > ARCH_PFN_OFFSET) {
442 		pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
443 			(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
444 			min_low_pfn - ARCH_PFN_OFFSET);
445 	} else if (min_low_pfn < ARCH_PFN_OFFSET) {
446 		pr_info("%lu free pages won't be used\n",
447 			ARCH_PFN_OFFSET - min_low_pfn);
448 	}
449 	min_low_pfn = ARCH_PFN_OFFSET;
450 
451 	/*
452 	 * Determine low and high memory ranges
453 	 */
454 	max_pfn = max_low_pfn;
455 	if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
456 #ifdef CONFIG_HIGHMEM
457 		highstart_pfn = PFN_DOWN(HIGHMEM_START);
458 		highend_pfn = max_low_pfn;
459 #endif
460 		max_low_pfn = PFN_DOWN(HIGHMEM_START);
461 	}
462 
463 #ifdef CONFIG_BLK_DEV_INITRD
464 	/*
465 	 * mapstart should be after initrd_end
466 	 */
467 	if (initrd_end)
468 		mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
469 #endif
470 
471 	/*
472 	 * check that mapstart doesn't overlap with any of
473 	 * memory regions that have been reserved through eg. DTB
474 	 */
475 	bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn);
476 
477 	bootmap_valid = memory_region_available(PFN_PHYS(mapstart),
478 						bootmap_size);
479 	for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) {
480 		unsigned long mapstart_addr;
481 
482 		switch (boot_mem_map.map[i].type) {
483 		case BOOT_MEM_RESERVED:
484 			mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr +
485 						boot_mem_map.map[i].size);
486 			if (PHYS_PFN(mapstart_addr) < mapstart)
487 				break;
488 
489 			bootmap_valid = memory_region_available(mapstart_addr,
490 								bootmap_size);
491 			if (bootmap_valid)
492 				mapstart = PHYS_PFN(mapstart_addr);
493 			break;
494 		default:
495 			break;
496 		}
497 	}
498 
499 	if (!bootmap_valid)
500 		panic("No memory area to place a bootmap bitmap");
501 
502 	/*
503 	 * Initialize the boot-time allocator with low memory only.
504 	 */
505 	if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart,
506 					 min_low_pfn, max_low_pfn))
507 		panic("Unexpected memory size required for bootmap");
508 
509 	for (i = 0; i < boot_mem_map.nr_map; i++) {
510 		unsigned long start, end;
511 
512 		start = PFN_UP(boot_mem_map.map[i].addr);
513 		end = PFN_DOWN(boot_mem_map.map[i].addr
514 				+ boot_mem_map.map[i].size);
515 
516 		if (start <= min_low_pfn)
517 			start = min_low_pfn;
518 		if (start >= end)
519 			continue;
520 
521 #ifndef CONFIG_HIGHMEM
522 		if (end > max_low_pfn)
523 			end = max_low_pfn;
524 
525 		/*
526 		 * ... finally, is the area going away?
527 		 */
528 		if (end <= start)
529 			continue;
530 #endif
531 
532 		memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
533 	}
534 
535 	/*
536 	 * Register fully available low RAM pages with the bootmem allocator.
537 	 */
538 	for (i = 0; i < boot_mem_map.nr_map; i++) {
539 		unsigned long start, end, size;
540 
541 		start = PFN_UP(boot_mem_map.map[i].addr);
542 		end   = PFN_DOWN(boot_mem_map.map[i].addr
543 				    + boot_mem_map.map[i].size);
544 
545 		/*
546 		 * Reserve usable memory.
547 		 */
548 		switch (boot_mem_map.map[i].type) {
549 		case BOOT_MEM_RAM:
550 			break;
551 		case BOOT_MEM_INIT_RAM:
552 			memory_present(0, start, end);
553 			continue;
554 		default:
555 			/* Not usable memory */
556 			if (start > min_low_pfn && end < max_low_pfn)
557 				reserve_bootmem(boot_mem_map.map[i].addr,
558 						boot_mem_map.map[i].size,
559 						BOOTMEM_DEFAULT);
560 			continue;
561 		}
562 
563 		/*
564 		 * We are rounding up the start address of usable memory
565 		 * and at the end of the usable range downwards.
566 		 */
567 		if (start >= max_low_pfn)
568 			continue;
569 		if (start < reserved_end)
570 			start = reserved_end;
571 		if (end > max_low_pfn)
572 			end = max_low_pfn;
573 
574 		/*
575 		 * ... finally, is the area going away?
576 		 */
577 		if (end <= start)
578 			continue;
579 		size = end - start;
580 
581 		/* Register lowmem ranges */
582 		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
583 		memory_present(0, start, end);
584 	}
585 
586 	/*
587 	 * Reserve the bootmap memory.
588 	 */
589 	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
590 
591 #ifdef CONFIG_RELOCATABLE
592 	/*
593 	 * The kernel reserves all memory below its _end symbol as bootmem,
594 	 * but the kernel may now be at a much higher address. The memory
595 	 * between the original and new locations may be returned to the system.
596 	 */
597 	if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
598 		unsigned long offset;
599 		extern void show_kernel_relocation(const char *level);
600 
601 		offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
602 		free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);
603 
604 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
605 		/*
606 		 * This information is necessary when debugging the kernel
607 		 * But is a security vulnerability otherwise!
608 		 */
609 		show_kernel_relocation(KERN_INFO);
610 #endif
611 	}
612 #endif
613 
614 	/*
615 	 * Reserve initrd memory if needed.
616 	 */
617 	finalize_initrd();
618 }
619 
620 #endif	/* CONFIG_SGI_IP27 */
621 
622 /*
623  * arch_mem_init - initialize memory management subsystem
624  *
625  *  o plat_mem_setup() detects the memory configuration and will record detected
626  *    memory areas using add_memory_region.
627  *
628  * At this stage the memory configuration of the system is known to the
629  * kernel but generic memory management system is still entirely uninitialized.
630  *
631  *  o bootmem_init()
632  *  o sparse_init()
633  *  o paging_init()
634  *  o dma_contiguous_reserve()
635  *
636  * At this stage the bootmem allocator is ready to use.
637  *
638  * NOTE: historically plat_mem_setup did the entire platform initialization.
639  *	 This was rather impractical because it meant plat_mem_setup had to
640  * get away without any kind of memory allocator.  To keep old code from
641  * breaking plat_setup was just renamed to plat_mem_setup and a second platform
642  * initialization hook for anything else was introduced.
643  */
644 
645 static int usermem __initdata;
646 
647 static int __init early_parse_mem(char *p)
648 {
649 	phys_addr_t start, size;
650 
651 	/*
652 	 * If a user specifies memory size, we
653 	 * blow away any automatically generated
654 	 * size.
655 	 */
656 	if (usermem == 0) {
657 		boot_mem_map.nr_map = 0;
658 		usermem = 1;
659 	}
660 	start = 0;
661 	size = memparse(p, &p);
662 	if (*p == '@')
663 		start = memparse(p + 1, &p);
664 
665 	add_memory_region(start, size, BOOT_MEM_RAM);
666 
667 	if (start && start > PHYS_OFFSET)
668 		add_memory_region(PHYS_OFFSET, start - PHYS_OFFSET,
669 				BOOT_MEM_RESERVED);
670 	return 0;
671 }
672 early_param("mem", early_parse_mem);
673 
674 static int __init early_parse_memmap(char *p)
675 {
676 	char *oldp;
677 	u64 start_at, mem_size;
678 
679 	if (!p)
680 		return -EINVAL;
681 
682 	if (!strncmp(p, "exactmap", 8)) {
683 		pr_err("\"memmap=exactmap\" invalid on MIPS\n");
684 		return 0;
685 	}
686 
687 	oldp = p;
688 	mem_size = memparse(p, &p);
689 	if (p == oldp)
690 		return -EINVAL;
691 
692 	if (*p == '@') {
693 		start_at = memparse(p+1, &p);
694 		add_memory_region(start_at, mem_size, BOOT_MEM_RAM);
695 	} else if (*p == '#') {
696 		pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
697 		return -EINVAL;
698 	} else if (*p == '$') {
699 		start_at = memparse(p+1, &p);
700 		add_memory_region(start_at, mem_size, BOOT_MEM_RESERVED);
701 	} else {
702 		pr_err("\"memmap\" invalid format!\n");
703 		return -EINVAL;
704 	}
705 
706 	if (*p == '\0') {
707 		usermem = 1;
708 		return 0;
709 	} else
710 		return -EINVAL;
711 }
712 early_param("memmap", early_parse_memmap);
713 
714 #ifdef CONFIG_PROC_VMCORE
715 unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
716 static int __init early_parse_elfcorehdr(char *p)
717 {
718 	int i;
719 
720 	setup_elfcorehdr = memparse(p, &p);
721 
722 	for (i = 0; i < boot_mem_map.nr_map; i++) {
723 		unsigned long start = boot_mem_map.map[i].addr;
724 		unsigned long end = (boot_mem_map.map[i].addr +
725 				     boot_mem_map.map[i].size);
726 		if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
727 			/*
728 			 * Reserve from the elf core header to the end of
729 			 * the memory segment, that should all be kdump
730 			 * reserved memory.
731 			 */
732 			setup_elfcorehdr_size = end - setup_elfcorehdr;
733 			break;
734 		}
735 	}
736 	/*
737 	 * If we don't find it in the memory map, then we shouldn't
738 	 * have to worry about it, as the new kernel won't use it.
739 	 */
740 	return 0;
741 }
742 early_param("elfcorehdr", early_parse_elfcorehdr);
743 #endif
744 
745 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
746 {
747 	phys_addr_t size;
748 	int i;
749 
750 	size = end - mem;
751 	if (!size)
752 		return;
753 
754 	/* Make sure it is in the boot_mem_map */
755 	for (i = 0; i < boot_mem_map.nr_map; i++) {
756 		if (mem >= boot_mem_map.map[i].addr &&
757 		    mem < (boot_mem_map.map[i].addr +
758 			   boot_mem_map.map[i].size))
759 			return;
760 	}
761 	add_memory_region(mem, size, type);
762 }
763 
764 #ifdef CONFIG_KEXEC
765 static inline unsigned long long get_total_mem(void)
766 {
767 	unsigned long long total;
768 
769 	total = max_pfn - min_low_pfn;
770 	return total << PAGE_SHIFT;
771 }
772 
773 static void __init mips_parse_crashkernel(void)
774 {
775 	unsigned long long total_mem;
776 	unsigned long long crash_size, crash_base;
777 	int ret;
778 
779 	total_mem = get_total_mem();
780 	ret = parse_crashkernel(boot_command_line, total_mem,
781 				&crash_size, &crash_base);
782 	if (ret != 0 || crash_size <= 0)
783 		return;
784 
785 	if (!memory_region_available(crash_base, crash_size)) {
786 		pr_warn("Invalid memory region reserved for crash kernel\n");
787 		return;
788 	}
789 
790 	crashk_res.start = crash_base;
791 	crashk_res.end	 = crash_base + crash_size - 1;
792 }
793 
794 static void __init request_crashkernel(struct resource *res)
795 {
796 	int ret;
797 
798 	if (crashk_res.start == crashk_res.end)
799 		return;
800 
801 	ret = request_resource(res, &crashk_res);
802 	if (!ret)
803 		pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
804 			(unsigned long)((crashk_res.end -
805 					 crashk_res.start + 1) >> 20),
806 			(unsigned long)(crashk_res.start  >> 20));
807 }
808 #else /* !defined(CONFIG_KEXEC)		*/
809 static void __init mips_parse_crashkernel(void)
810 {
811 }
812 
813 static void __init request_crashkernel(struct resource *res)
814 {
815 }
816 #endif /* !defined(CONFIG_KEXEC)  */
817 
818 #define USE_PROM_CMDLINE	IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
819 #define USE_DTB_CMDLINE		IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
820 #define EXTEND_WITH_PROM	IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
821 #define BUILTIN_EXTEND_WITH_PROM	\
822 	IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)
823 
824 static void __init arch_mem_init(char **cmdline_p)
825 {
826 	struct memblock_region *reg;
827 	extern void plat_mem_setup(void);
828 
829 	/* call board setup routine */
830 	plat_mem_setup();
831 
832 	/*
833 	 * Make sure all kernel memory is in the maps.  The "UP" and
834 	 * "DOWN" are opposite for initdata since if it crosses over
835 	 * into another memory section you don't want that to be
836 	 * freed when the initdata is freed.
837 	 */
838 	arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
839 			 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
840 			 BOOT_MEM_RAM);
841 	arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
842 			 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
843 			 BOOT_MEM_INIT_RAM);
844 
845 	pr_info("Determined physical RAM map:\n");
846 	print_memory_map();
847 
848 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
849 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
850 #else
851 	if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
852 	    (USE_DTB_CMDLINE && !boot_command_line[0]))
853 		strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
854 
855 	if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
856 		if (boot_command_line[0])
857 			strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
858 		strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
859 	}
860 
861 #if defined(CONFIG_CMDLINE_BOOL)
862 	if (builtin_cmdline[0]) {
863 		if (boot_command_line[0])
864 			strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
865 		strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
866 	}
867 
868 	if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
869 		if (boot_command_line[0])
870 			strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
871 		strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
872 	}
873 #endif
874 #endif
875 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
876 
877 	*cmdline_p = command_line;
878 
879 	parse_early_param();
880 
881 	if (usermem) {
882 		pr_info("User-defined physical RAM map:\n");
883 		print_memory_map();
884 	}
885 
886 	early_init_fdt_reserve_self();
887 	early_init_fdt_scan_reserved_mem();
888 
889 	bootmem_init();
890 #ifdef CONFIG_PROC_VMCORE
891 	if (setup_elfcorehdr && setup_elfcorehdr_size) {
892 		printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
893 		       setup_elfcorehdr, setup_elfcorehdr_size);
894 		reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
895 				BOOTMEM_DEFAULT);
896 	}
897 #endif
898 
899 	mips_parse_crashkernel();
900 #ifdef CONFIG_KEXEC
901 	if (crashk_res.start != crashk_res.end)
902 		reserve_bootmem(crashk_res.start,
903 				crashk_res.end - crashk_res.start + 1,
904 				BOOTMEM_DEFAULT);
905 #endif
906 	device_tree_init();
907 	sparse_init();
908 	plat_swiotlb_setup();
909 
910 	dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
911 	/* Tell bootmem about cma reserved memblock section */
912 	for_each_memblock(reserved, reg)
913 		if (reg->size != 0)
914 			reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
915 
916 	reserve_bootmem_region(__pa_symbol(&__nosave_begin),
917 			__pa_symbol(&__nosave_end)); /* Reserve for hibernation */
918 }
919 
920 static void __init resource_init(void)
921 {
922 	int i;
923 
924 	if (UNCAC_BASE != IO_BASE)
925 		return;
926 
927 	code_resource.start = __pa_symbol(&_text);
928 	code_resource.end = __pa_symbol(&_etext) - 1;
929 	data_resource.start = __pa_symbol(&_etext);
930 	data_resource.end = __pa_symbol(&_edata) - 1;
931 	bss_resource.start = __pa_symbol(&__bss_start);
932 	bss_resource.end = __pa_symbol(&__bss_stop) - 1;
933 
934 	for (i = 0; i < boot_mem_map.nr_map; i++) {
935 		struct resource *res;
936 		unsigned long start, end;
937 
938 		start = boot_mem_map.map[i].addr;
939 		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
940 		if (start >= HIGHMEM_START)
941 			continue;
942 		if (end >= HIGHMEM_START)
943 			end = HIGHMEM_START - 1;
944 
945 		res = alloc_bootmem(sizeof(struct resource));
946 
947 		res->start = start;
948 		res->end = end;
949 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
950 
951 		switch (boot_mem_map.map[i].type) {
952 		case BOOT_MEM_RAM:
953 		case BOOT_MEM_INIT_RAM:
954 		case BOOT_MEM_ROM_DATA:
955 			res->name = "System RAM";
956 			res->flags |= IORESOURCE_SYSRAM;
957 			break;
958 		case BOOT_MEM_RESERVED:
959 		default:
960 			res->name = "reserved";
961 		}
962 
963 		request_resource(&iomem_resource, res);
964 
965 		/*
966 		 *  We don't know which RAM region contains kernel data,
967 		 *  so we try it repeatedly and let the resource manager
968 		 *  test it.
969 		 */
970 		request_resource(res, &code_resource);
971 		request_resource(res, &data_resource);
972 		request_resource(res, &bss_resource);
973 		request_crashkernel(res);
974 	}
975 }
976 
977 #ifdef CONFIG_SMP
978 static void __init prefill_possible_map(void)
979 {
980 	int i, possible = num_possible_cpus();
981 
982 	if (possible > nr_cpu_ids)
983 		possible = nr_cpu_ids;
984 
985 	for (i = 0; i < possible; i++)
986 		set_cpu_possible(i, true);
987 	for (; i < NR_CPUS; i++)
988 		set_cpu_possible(i, false);
989 
990 	nr_cpu_ids = possible;
991 }
992 #else
993 static inline void prefill_possible_map(void) {}
994 #endif
995 
996 void __init setup_arch(char **cmdline_p)
997 {
998 	cpu_probe();
999 	mips_cm_probe();
1000 	prom_init();
1001 
1002 	setup_early_fdc_console();
1003 #ifdef CONFIG_EARLY_PRINTK
1004 	setup_early_printk();
1005 #endif
1006 	cpu_report();
1007 	check_bugs_early();
1008 
1009 #if defined(CONFIG_VT)
1010 #if defined(CONFIG_VGA_CONSOLE)
1011 	conswitchp = &vga_con;
1012 #elif defined(CONFIG_DUMMY_CONSOLE)
1013 	conswitchp = &dummy_con;
1014 #endif
1015 #endif
1016 
1017 	arch_mem_init(cmdline_p);
1018 
1019 	resource_init();
1020 	plat_smp_setup();
1021 	prefill_possible_map();
1022 
1023 	cpu_cache_init();
1024 	paging_init();
1025 }
1026 
1027 unsigned long kernelsp[NR_CPUS];
1028 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
1029 
1030 #ifdef CONFIG_USE_OF
1031 unsigned long fw_passed_dtb;
1032 #endif
1033 
1034 #ifdef CONFIG_DEBUG_FS
1035 struct dentry *mips_debugfs_dir;
1036 static int __init debugfs_mips(void)
1037 {
1038 	struct dentry *d;
1039 
1040 	d = debugfs_create_dir("mips", NULL);
1041 	if (!d)
1042 		return -ENOMEM;
1043 	mips_debugfs_dir = d;
1044 	return 0;
1045 }
1046 arch_initcall(debugfs_mips);
1047 #endif
1048