1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1995 Linus Torvalds 7 * Copyright (C) 1995 Waldorf Electronics 8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle 9 * Copyright (C) 1996 Stoned Elipot 10 * Copyright (C) 1999 Silicon Graphics, Inc. 11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki 12 */ 13 #include <linux/init.h> 14 #include <linux/ioport.h> 15 #include <linux/module.h> 16 #include <linux/screen_info.h> 17 #include <linux/bootmem.h> 18 #include <linux/initrd.h> 19 #include <linux/root_dev.h> 20 #include <linux/highmem.h> 21 #include <linux/console.h> 22 #include <linux/pfn.h> 23 #include <linux/debugfs.h> 24 25 #include <asm/addrspace.h> 26 #include <asm/bootinfo.h> 27 #include <asm/bugs.h> 28 #include <asm/cache.h> 29 #include <asm/cpu.h> 30 #include <asm/sections.h> 31 #include <asm/setup.h> 32 #include <asm/smp-ops.h> 33 #include <asm/system.h> 34 35 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; 36 37 EXPORT_SYMBOL(cpu_data); 38 39 #ifdef CONFIG_VT 40 struct screen_info screen_info; 41 #endif 42 43 /* 44 * Despite it's name this variable is even if we don't have PCI 45 */ 46 unsigned int PCI_DMA_BUS_IS_PHYS; 47 48 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS); 49 50 /* 51 * Setup information 52 * 53 * These are initialized so they are in the .data section 54 */ 55 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; 56 57 EXPORT_SYMBOL(mips_machtype); 58 59 struct boot_mem_map boot_mem_map; 60 61 static char command_line[CL_SIZE]; 62 char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE; 63 64 /* 65 * mips_io_port_base is the begin of the address space to which x86 style 66 * I/O ports are mapped. 67 */ 68 const unsigned long mips_io_port_base __read_mostly = -1; 69 EXPORT_SYMBOL(mips_io_port_base); 70 71 static struct resource code_resource = { .name = "Kernel code", }; 72 static struct resource data_resource = { .name = "Kernel data", }; 73 74 void __init add_memory_region(phys_t start, phys_t size, long type) 75 { 76 int x = boot_mem_map.nr_map; 77 struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1; 78 79 /* Sanity check */ 80 if (start + size < start) { 81 pr_warning("Trying to add an invalid memory region, skipped\n"); 82 return; 83 } 84 85 /* 86 * Try to merge with previous entry if any. This is far less than 87 * perfect but is sufficient for most real world cases. 88 */ 89 if (x && prev->addr + prev->size == start && prev->type == type) { 90 prev->size += size; 91 return; 92 } 93 94 if (x == BOOT_MEM_MAP_MAX) { 95 pr_err("Ooops! Too many entries in the memory map!\n"); 96 return; 97 } 98 99 boot_mem_map.map[x].addr = start; 100 boot_mem_map.map[x].size = size; 101 boot_mem_map.map[x].type = type; 102 boot_mem_map.nr_map++; 103 } 104 105 static void __init print_memory_map(void) 106 { 107 int i; 108 const int field = 2 * sizeof(unsigned long); 109 110 for (i = 0; i < boot_mem_map.nr_map; i++) { 111 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ", 112 field, (unsigned long long) boot_mem_map.map[i].size, 113 field, (unsigned long long) boot_mem_map.map[i].addr); 114 115 switch (boot_mem_map.map[i].type) { 116 case BOOT_MEM_RAM: 117 printk(KERN_CONT "(usable)\n"); 118 break; 119 case BOOT_MEM_ROM_DATA: 120 printk(KERN_CONT "(ROM data)\n"); 121 break; 122 case BOOT_MEM_RESERVED: 123 printk(KERN_CONT "(reserved)\n"); 124 break; 125 default: 126 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type); 127 break; 128 } 129 } 130 } 131 132 /* 133 * Manage initrd 134 */ 135 #ifdef CONFIG_BLK_DEV_INITRD 136 137 static int __init rd_start_early(char *p) 138 { 139 unsigned long start = memparse(p, &p); 140 141 #ifdef CONFIG_64BIT 142 /* Guess if the sign extension was forgotten by bootloader */ 143 if (start < XKPHYS) 144 start = (int)start; 145 #endif 146 initrd_start = start; 147 initrd_end += start; 148 return 0; 149 } 150 early_param("rd_start", rd_start_early); 151 152 static int __init rd_size_early(char *p) 153 { 154 initrd_end += memparse(p, &p); 155 return 0; 156 } 157 early_param("rd_size", rd_size_early); 158 159 /* it returns the next free pfn after initrd */ 160 static unsigned long __init init_initrd(void) 161 { 162 unsigned long end; 163 164 /* 165 * Board specific code or command line parser should have 166 * already set up initrd_start and initrd_end. In these cases 167 * perfom sanity checks and use them if all looks good. 168 */ 169 if (!initrd_start || initrd_end <= initrd_start) { 170 #ifdef CONFIG_PROBE_INITRD_HEADER 171 u32 *initrd_header; 172 173 /* 174 * See if initrd has been added to the kernel image by 175 * arch/mips/boot/addinitrd.c. In that case a header is 176 * prepended to initrd and is made up by 8 bytes. The first 177 * word is a magic number and the second one is the size of 178 * initrd. Initrd start must be page aligned in any cases. 179 */ 180 initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8; 181 if (initrd_header[0] != 0x494E5244) 182 goto disable; 183 initrd_start = (unsigned long)(initrd_header + 2); 184 initrd_end = initrd_start + initrd_header[1]; 185 #else 186 goto disable; 187 #endif 188 } 189 190 if (initrd_start & ~PAGE_MASK) { 191 pr_err("initrd start must be page aligned\n"); 192 goto disable; 193 } 194 if (initrd_start < PAGE_OFFSET) { 195 pr_err("initrd start < PAGE_OFFSET\n"); 196 goto disable; 197 } 198 199 /* 200 * Sanitize initrd addresses. For example firmware 201 * can't guess if they need to pass them through 202 * 64-bits values if the kernel has been built in pure 203 * 32-bit. We need also to switch from KSEG0 to XKPHYS 204 * addresses now, so the code can now safely use __pa(). 205 */ 206 end = __pa(initrd_end); 207 initrd_end = (unsigned long)__va(end); 208 initrd_start = (unsigned long)__va(__pa(initrd_start)); 209 210 ROOT_DEV = Root_RAM0; 211 return PFN_UP(end); 212 disable: 213 initrd_start = 0; 214 initrd_end = 0; 215 return 0; 216 } 217 218 static void __init finalize_initrd(void) 219 { 220 unsigned long size = initrd_end - initrd_start; 221 222 if (size == 0) { 223 printk(KERN_INFO "Initrd not found or empty"); 224 goto disable; 225 } 226 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { 227 printk(KERN_ERR "Initrd extends beyond end of memory"); 228 goto disable; 229 } 230 231 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT); 232 initrd_below_start_ok = 1; 233 234 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", 235 initrd_start, size); 236 return; 237 disable: 238 printk(KERN_CONT " - disabling initrd\n"); 239 initrd_start = 0; 240 initrd_end = 0; 241 } 242 243 #else /* !CONFIG_BLK_DEV_INITRD */ 244 245 static unsigned long __init init_initrd(void) 246 { 247 return 0; 248 } 249 250 #define finalize_initrd() do {} while (0) 251 252 #endif 253 254 /* 255 * Initialize the bootmem allocator. It also setup initrd related data 256 * if needed. 257 */ 258 #ifdef CONFIG_SGI_IP27 259 260 static void __init bootmem_init(void) 261 { 262 init_initrd(); 263 finalize_initrd(); 264 } 265 266 #else /* !CONFIG_SGI_IP27 */ 267 268 static void __init bootmem_init(void) 269 { 270 unsigned long reserved_end; 271 unsigned long mapstart = ~0UL; 272 unsigned long bootmap_size; 273 int i; 274 275 /* 276 * Init any data related to initrd. It's a nop if INITRD is 277 * not selected. Once that done we can determine the low bound 278 * of usable memory. 279 */ 280 reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end))); 281 282 /* 283 * max_low_pfn is not a number of pages. The number of pages 284 * of the system is given by 'max_low_pfn - min_low_pfn'. 285 */ 286 min_low_pfn = ~0UL; 287 max_low_pfn = 0; 288 289 /* 290 * Find the highest page frame number we have available. 291 */ 292 for (i = 0; i < boot_mem_map.nr_map; i++) { 293 unsigned long start, end; 294 295 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) 296 continue; 297 298 start = PFN_UP(boot_mem_map.map[i].addr); 299 end = PFN_DOWN(boot_mem_map.map[i].addr 300 + boot_mem_map.map[i].size); 301 302 if (end > max_low_pfn) 303 max_low_pfn = end; 304 if (start < min_low_pfn) 305 min_low_pfn = start; 306 if (end <= reserved_end) 307 continue; 308 if (start >= mapstart) 309 continue; 310 mapstart = max(reserved_end, start); 311 } 312 313 if (min_low_pfn >= max_low_pfn) 314 panic("Incorrect memory mapping !!!"); 315 if (min_low_pfn > ARCH_PFN_OFFSET) { 316 pr_info("Wasting %lu bytes for tracking %lu unused pages\n", 317 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page), 318 min_low_pfn - ARCH_PFN_OFFSET); 319 } else if (min_low_pfn < ARCH_PFN_OFFSET) { 320 pr_info("%lu free pages won't be used\n", 321 ARCH_PFN_OFFSET - min_low_pfn); 322 } 323 min_low_pfn = ARCH_PFN_OFFSET; 324 325 /* 326 * Determine low and high memory ranges 327 */ 328 max_pfn = max_low_pfn; 329 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { 330 #ifdef CONFIG_HIGHMEM 331 highstart_pfn = PFN_DOWN(HIGHMEM_START); 332 highend_pfn = max_low_pfn; 333 #endif 334 max_low_pfn = PFN_DOWN(HIGHMEM_START); 335 } 336 337 /* 338 * Initialize the boot-time allocator with low memory only. 339 */ 340 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart, 341 min_low_pfn, max_low_pfn); 342 343 344 for (i = 0; i < boot_mem_map.nr_map; i++) { 345 unsigned long start, end; 346 347 start = PFN_UP(boot_mem_map.map[i].addr); 348 end = PFN_DOWN(boot_mem_map.map[i].addr 349 + boot_mem_map.map[i].size); 350 351 if (start <= min_low_pfn) 352 start = min_low_pfn; 353 if (start >= end) 354 continue; 355 356 #ifndef CONFIG_HIGHMEM 357 if (end > max_low_pfn) 358 end = max_low_pfn; 359 360 /* 361 * ... finally, is the area going away? 362 */ 363 if (end <= start) 364 continue; 365 #endif 366 367 add_active_range(0, start, end); 368 } 369 370 /* 371 * Register fully available low RAM pages with the bootmem allocator. 372 */ 373 for (i = 0; i < boot_mem_map.nr_map; i++) { 374 unsigned long start, end, size; 375 376 /* 377 * Reserve usable memory. 378 */ 379 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) 380 continue; 381 382 start = PFN_UP(boot_mem_map.map[i].addr); 383 end = PFN_DOWN(boot_mem_map.map[i].addr 384 + boot_mem_map.map[i].size); 385 /* 386 * We are rounding up the start address of usable memory 387 * and at the end of the usable range downwards. 388 */ 389 if (start >= max_low_pfn) 390 continue; 391 if (start < reserved_end) 392 start = reserved_end; 393 if (end > max_low_pfn) 394 end = max_low_pfn; 395 396 /* 397 * ... finally, is the area going away? 398 */ 399 if (end <= start) 400 continue; 401 size = end - start; 402 403 /* Register lowmem ranges */ 404 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT); 405 memory_present(0, start, end); 406 } 407 408 /* 409 * Reserve the bootmap memory. 410 */ 411 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT); 412 413 /* 414 * Reserve initrd memory if needed. 415 */ 416 finalize_initrd(); 417 } 418 419 #endif /* CONFIG_SGI_IP27 */ 420 421 /* 422 * arch_mem_init - initialize memory management subsystem 423 * 424 * o plat_mem_setup() detects the memory configuration and will record detected 425 * memory areas using add_memory_region. 426 * 427 * At this stage the memory configuration of the system is known to the 428 * kernel but generic memory management system is still entirely uninitialized. 429 * 430 * o bootmem_init() 431 * o sparse_init() 432 * o paging_init() 433 * 434 * At this stage the bootmem allocator is ready to use. 435 * 436 * NOTE: historically plat_mem_setup did the entire platform initialization. 437 * This was rather impractical because it meant plat_mem_setup had to 438 * get away without any kind of memory allocator. To keep old code from 439 * breaking plat_setup was just renamed to plat_setup and a second platform 440 * initialization hook for anything else was introduced. 441 */ 442 443 static int usermem __initdata = 0; 444 445 static int __init early_parse_mem(char *p) 446 { 447 unsigned long start, size; 448 449 /* 450 * If a user specifies memory size, we 451 * blow away any automatically generated 452 * size. 453 */ 454 if (usermem == 0) { 455 boot_mem_map.nr_map = 0; 456 usermem = 1; 457 } 458 start = 0; 459 size = memparse(p, &p); 460 if (*p == '@') 461 start = memparse(p + 1, &p); 462 463 add_memory_region(start, size, BOOT_MEM_RAM); 464 return 0; 465 } 466 early_param("mem", early_parse_mem); 467 468 static void __init arch_mem_init(char **cmdline_p) 469 { 470 extern void plat_mem_setup(void); 471 472 /* call board setup routine */ 473 plat_mem_setup(); 474 475 pr_info("Determined physical RAM map:\n"); 476 print_memory_map(); 477 478 strlcpy(command_line, arcs_cmdline, sizeof(command_line)); 479 strlcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); 480 481 *cmdline_p = command_line; 482 483 parse_early_param(); 484 485 if (usermem) { 486 pr_info("User-defined physical RAM map:\n"); 487 print_memory_map(); 488 } 489 490 bootmem_init(); 491 sparse_init(); 492 paging_init(); 493 } 494 495 static void __init resource_init(void) 496 { 497 int i; 498 499 if (UNCAC_BASE != IO_BASE) 500 return; 501 502 code_resource.start = __pa_symbol(&_text); 503 code_resource.end = __pa_symbol(&_etext) - 1; 504 data_resource.start = __pa_symbol(&_etext); 505 data_resource.end = __pa_symbol(&_edata) - 1; 506 507 /* 508 * Request address space for all standard RAM. 509 */ 510 for (i = 0; i < boot_mem_map.nr_map; i++) { 511 struct resource *res; 512 unsigned long start, end; 513 514 start = boot_mem_map.map[i].addr; 515 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; 516 if (start >= HIGHMEM_START) 517 continue; 518 if (end >= HIGHMEM_START) 519 end = HIGHMEM_START - 1; 520 521 res = alloc_bootmem(sizeof(struct resource)); 522 switch (boot_mem_map.map[i].type) { 523 case BOOT_MEM_RAM: 524 case BOOT_MEM_ROM_DATA: 525 res->name = "System RAM"; 526 break; 527 case BOOT_MEM_RESERVED: 528 default: 529 res->name = "reserved"; 530 } 531 532 res->start = start; 533 res->end = end; 534 535 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 536 request_resource(&iomem_resource, res); 537 538 /* 539 * We don't know which RAM region contains kernel data, 540 * so we try it repeatedly and let the resource manager 541 * test it. 542 */ 543 request_resource(res, &code_resource); 544 request_resource(res, &data_resource); 545 } 546 } 547 548 void __init setup_arch(char **cmdline_p) 549 { 550 cpu_probe(); 551 prom_init(); 552 553 #ifdef CONFIG_EARLY_PRINTK 554 setup_early_printk(); 555 #endif 556 cpu_report(); 557 check_bugs_early(); 558 559 #if defined(CONFIG_VT) 560 #if defined(CONFIG_VGA_CONSOLE) 561 conswitchp = &vga_con; 562 #elif defined(CONFIG_DUMMY_CONSOLE) 563 conswitchp = &dummy_con; 564 #endif 565 #endif 566 567 arch_mem_init(cmdline_p); 568 569 resource_init(); 570 plat_smp_setup(); 571 } 572 573 static int __init fpu_disable(char *s) 574 { 575 int i; 576 577 for (i = 0; i < NR_CPUS; i++) 578 cpu_data[i].options &= ~MIPS_CPU_FPU; 579 580 return 1; 581 } 582 583 __setup("nofpu", fpu_disable); 584 585 static int __init dsp_disable(char *s) 586 { 587 cpu_data[0].ases &= ~MIPS_ASE_DSP; 588 589 return 1; 590 } 591 592 __setup("nodsp", dsp_disable); 593 594 unsigned long kernelsp[NR_CPUS]; 595 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; 596 597 #ifdef CONFIG_DEBUG_FS 598 struct dentry *mips_debugfs_dir; 599 static int __init debugfs_mips(void) 600 { 601 struct dentry *d; 602 603 d = debugfs_create_dir("mips", NULL); 604 if (!d) 605 return -ENOMEM; 606 mips_debugfs_dir = d; 607 return 0; 608 } 609 arch_initcall(debugfs_mips); 610 #endif 611