1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1995 Linus Torvalds 7 * Copyright (C) 1995 Waldorf Electronics 8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle 9 * Copyright (C) 1996 Stoned Elipot 10 * Copyright (C) 1999 Silicon Graphics, Inc. 11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki 12 */ 13 #include <linux/init.h> 14 #include <linux/ioport.h> 15 #include <linux/export.h> 16 #include <linux/screen_info.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/initrd.h> 20 #include <linux/root_dev.h> 21 #include <linux/highmem.h> 22 #include <linux/console.h> 23 #include <linux/pfn.h> 24 #include <linux/debugfs.h> 25 #include <linux/kexec.h> 26 27 #include <asm/addrspace.h> 28 #include <asm/bootinfo.h> 29 #include <asm/bugs.h> 30 #include <asm/cache.h> 31 #include <asm/cpu.h> 32 #include <asm/sections.h> 33 #include <asm/setup.h> 34 #include <asm/smp-ops.h> 35 #include <asm/prom.h> 36 37 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; 38 39 EXPORT_SYMBOL(cpu_data); 40 41 #ifdef CONFIG_VT 42 struct screen_info screen_info; 43 #endif 44 45 /* 46 * Despite it's name this variable is even if we don't have PCI 47 */ 48 unsigned int PCI_DMA_BUS_IS_PHYS; 49 50 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS); 51 52 /* 53 * Setup information 54 * 55 * These are initialized so they are in the .data section 56 */ 57 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; 58 59 EXPORT_SYMBOL(mips_machtype); 60 61 struct boot_mem_map boot_mem_map; 62 63 static char __initdata command_line[COMMAND_LINE_SIZE]; 64 char __initdata arcs_cmdline[COMMAND_LINE_SIZE]; 65 66 #ifdef CONFIG_CMDLINE_BOOL 67 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 68 #endif 69 70 /* 71 * mips_io_port_base is the begin of the address space to which x86 style 72 * I/O ports are mapped. 73 */ 74 const unsigned long mips_io_port_base = -1; 75 EXPORT_SYMBOL(mips_io_port_base); 76 77 static struct resource code_resource = { .name = "Kernel code", }; 78 static struct resource data_resource = { .name = "Kernel data", }; 79 80 void __init add_memory_region(phys_t start, phys_t size, long type) 81 { 82 int x = boot_mem_map.nr_map; 83 int i; 84 85 /* Sanity check */ 86 if (start + size < start) { 87 pr_warning("Trying to add an invalid memory region, skipped\n"); 88 return; 89 } 90 91 /* 92 * Try to merge with existing entry, if any. 93 */ 94 for (i = 0; i < boot_mem_map.nr_map; i++) { 95 struct boot_mem_map_entry *entry = boot_mem_map.map + i; 96 unsigned long top; 97 98 if (entry->type != type) 99 continue; 100 101 if (start + size < entry->addr) 102 continue; /* no overlap */ 103 104 if (entry->addr + entry->size < start) 105 continue; /* no overlap */ 106 107 top = max(entry->addr + entry->size, start + size); 108 entry->addr = min(entry->addr, start); 109 entry->size = top - entry->addr; 110 111 return; 112 } 113 114 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) { 115 pr_err("Ooops! Too many entries in the memory map!\n"); 116 return; 117 } 118 119 boot_mem_map.map[x].addr = start; 120 boot_mem_map.map[x].size = size; 121 boot_mem_map.map[x].type = type; 122 boot_mem_map.nr_map++; 123 } 124 125 static void __init print_memory_map(void) 126 { 127 int i; 128 const int field = 2 * sizeof(unsigned long); 129 130 for (i = 0; i < boot_mem_map.nr_map; i++) { 131 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ", 132 field, (unsigned long long) boot_mem_map.map[i].size, 133 field, (unsigned long long) boot_mem_map.map[i].addr); 134 135 switch (boot_mem_map.map[i].type) { 136 case BOOT_MEM_RAM: 137 printk(KERN_CONT "(usable)\n"); 138 break; 139 case BOOT_MEM_INIT_RAM: 140 printk(KERN_CONT "(usable after init)\n"); 141 break; 142 case BOOT_MEM_ROM_DATA: 143 printk(KERN_CONT "(ROM data)\n"); 144 break; 145 case BOOT_MEM_RESERVED: 146 printk(KERN_CONT "(reserved)\n"); 147 break; 148 default: 149 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type); 150 break; 151 } 152 } 153 } 154 155 /* 156 * Manage initrd 157 */ 158 #ifdef CONFIG_BLK_DEV_INITRD 159 160 static int __init rd_start_early(char *p) 161 { 162 unsigned long start = memparse(p, &p); 163 164 #ifdef CONFIG_64BIT 165 /* Guess if the sign extension was forgotten by bootloader */ 166 if (start < XKPHYS) 167 start = (int)start; 168 #endif 169 initrd_start = start; 170 initrd_end += start; 171 return 0; 172 } 173 early_param("rd_start", rd_start_early); 174 175 static int __init rd_size_early(char *p) 176 { 177 initrd_end += memparse(p, &p); 178 return 0; 179 } 180 early_param("rd_size", rd_size_early); 181 182 /* it returns the next free pfn after initrd */ 183 static unsigned long __init init_initrd(void) 184 { 185 unsigned long end; 186 187 /* 188 * Board specific code or command line parser should have 189 * already set up initrd_start and initrd_end. In these cases 190 * perfom sanity checks and use them if all looks good. 191 */ 192 if (!initrd_start || initrd_end <= initrd_start) 193 goto disable; 194 195 if (initrd_start & ~PAGE_MASK) { 196 pr_err("initrd start must be page aligned\n"); 197 goto disable; 198 } 199 if (initrd_start < PAGE_OFFSET) { 200 pr_err("initrd start < PAGE_OFFSET\n"); 201 goto disable; 202 } 203 204 /* 205 * Sanitize initrd addresses. For example firmware 206 * can't guess if they need to pass them through 207 * 64-bits values if the kernel has been built in pure 208 * 32-bit. We need also to switch from KSEG0 to XKPHYS 209 * addresses now, so the code can now safely use __pa(). 210 */ 211 end = __pa(initrd_end); 212 initrd_end = (unsigned long)__va(end); 213 initrd_start = (unsigned long)__va(__pa(initrd_start)); 214 215 ROOT_DEV = Root_RAM0; 216 return PFN_UP(end); 217 disable: 218 initrd_start = 0; 219 initrd_end = 0; 220 return 0; 221 } 222 223 static void __init finalize_initrd(void) 224 { 225 unsigned long size = initrd_end - initrd_start; 226 227 if (size == 0) { 228 printk(KERN_INFO "Initrd not found or empty"); 229 goto disable; 230 } 231 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { 232 printk(KERN_ERR "Initrd extends beyond end of memory"); 233 goto disable; 234 } 235 236 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT); 237 initrd_below_start_ok = 1; 238 239 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", 240 initrd_start, size); 241 return; 242 disable: 243 printk(KERN_CONT " - disabling initrd\n"); 244 initrd_start = 0; 245 initrd_end = 0; 246 } 247 248 #else /* !CONFIG_BLK_DEV_INITRD */ 249 250 static unsigned long __init init_initrd(void) 251 { 252 return 0; 253 } 254 255 #define finalize_initrd() do {} while (0) 256 257 #endif 258 259 /* 260 * Initialize the bootmem allocator. It also setup initrd related data 261 * if needed. 262 */ 263 #ifdef CONFIG_SGI_IP27 264 265 static void __init bootmem_init(void) 266 { 267 init_initrd(); 268 finalize_initrd(); 269 } 270 271 #else /* !CONFIG_SGI_IP27 */ 272 273 static void __init bootmem_init(void) 274 { 275 unsigned long reserved_end; 276 unsigned long mapstart = ~0UL; 277 unsigned long bootmap_size; 278 int i; 279 280 /* 281 * Init any data related to initrd. It's a nop if INITRD is 282 * not selected. Once that done we can determine the low bound 283 * of usable memory. 284 */ 285 reserved_end = max(init_initrd(), 286 (unsigned long) PFN_UP(__pa_symbol(&_end))); 287 288 /* 289 * max_low_pfn is not a number of pages. The number of pages 290 * of the system is given by 'max_low_pfn - min_low_pfn'. 291 */ 292 min_low_pfn = ~0UL; 293 max_low_pfn = 0; 294 295 /* 296 * Find the highest page frame number we have available. 297 */ 298 for (i = 0; i < boot_mem_map.nr_map; i++) { 299 unsigned long start, end; 300 301 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) 302 continue; 303 304 start = PFN_UP(boot_mem_map.map[i].addr); 305 end = PFN_DOWN(boot_mem_map.map[i].addr 306 + boot_mem_map.map[i].size); 307 308 if (end > max_low_pfn) 309 max_low_pfn = end; 310 if (start < min_low_pfn) 311 min_low_pfn = start; 312 if (end <= reserved_end) 313 continue; 314 if (start >= mapstart) 315 continue; 316 mapstart = max(reserved_end, start); 317 } 318 319 if (min_low_pfn >= max_low_pfn) 320 panic("Incorrect memory mapping !!!"); 321 if (min_low_pfn > ARCH_PFN_OFFSET) { 322 pr_info("Wasting %lu bytes for tracking %lu unused pages\n", 323 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page), 324 min_low_pfn - ARCH_PFN_OFFSET); 325 } else if (min_low_pfn < ARCH_PFN_OFFSET) { 326 pr_info("%lu free pages won't be used\n", 327 ARCH_PFN_OFFSET - min_low_pfn); 328 } 329 min_low_pfn = ARCH_PFN_OFFSET; 330 331 /* 332 * Determine low and high memory ranges 333 */ 334 max_pfn = max_low_pfn; 335 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { 336 #ifdef CONFIG_HIGHMEM 337 highstart_pfn = PFN_DOWN(HIGHMEM_START); 338 highend_pfn = max_low_pfn; 339 #endif 340 max_low_pfn = PFN_DOWN(HIGHMEM_START); 341 } 342 343 /* 344 * Initialize the boot-time allocator with low memory only. 345 */ 346 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart, 347 min_low_pfn, max_low_pfn); 348 349 350 for (i = 0; i < boot_mem_map.nr_map; i++) { 351 unsigned long start, end; 352 353 start = PFN_UP(boot_mem_map.map[i].addr); 354 end = PFN_DOWN(boot_mem_map.map[i].addr 355 + boot_mem_map.map[i].size); 356 357 if (start <= min_low_pfn) 358 start = min_low_pfn; 359 if (start >= end) 360 continue; 361 362 #ifndef CONFIG_HIGHMEM 363 if (end > max_low_pfn) 364 end = max_low_pfn; 365 366 /* 367 * ... finally, is the area going away? 368 */ 369 if (end <= start) 370 continue; 371 #endif 372 373 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0); 374 } 375 376 /* 377 * Register fully available low RAM pages with the bootmem allocator. 378 */ 379 for (i = 0; i < boot_mem_map.nr_map; i++) { 380 unsigned long start, end, size; 381 382 start = PFN_UP(boot_mem_map.map[i].addr); 383 end = PFN_DOWN(boot_mem_map.map[i].addr 384 + boot_mem_map.map[i].size); 385 386 /* 387 * Reserve usable memory. 388 */ 389 switch (boot_mem_map.map[i].type) { 390 case BOOT_MEM_RAM: 391 break; 392 case BOOT_MEM_INIT_RAM: 393 memory_present(0, start, end); 394 continue; 395 default: 396 /* Not usable memory */ 397 continue; 398 } 399 400 /* 401 * We are rounding up the start address of usable memory 402 * and at the end of the usable range downwards. 403 */ 404 if (start >= max_low_pfn) 405 continue; 406 if (start < reserved_end) 407 start = reserved_end; 408 if (end > max_low_pfn) 409 end = max_low_pfn; 410 411 /* 412 * ... finally, is the area going away? 413 */ 414 if (end <= start) 415 continue; 416 size = end - start; 417 418 /* Register lowmem ranges */ 419 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT); 420 memory_present(0, start, end); 421 } 422 423 /* 424 * Reserve the bootmap memory. 425 */ 426 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT); 427 428 /* 429 * Reserve initrd memory if needed. 430 */ 431 finalize_initrd(); 432 } 433 434 #endif /* CONFIG_SGI_IP27 */ 435 436 /* 437 * arch_mem_init - initialize memory management subsystem 438 * 439 * o plat_mem_setup() detects the memory configuration and will record detected 440 * memory areas using add_memory_region. 441 * 442 * At this stage the memory configuration of the system is known to the 443 * kernel but generic memory management system is still entirely uninitialized. 444 * 445 * o bootmem_init() 446 * o sparse_init() 447 * o paging_init() 448 * 449 * At this stage the bootmem allocator is ready to use. 450 * 451 * NOTE: historically plat_mem_setup did the entire platform initialization. 452 * This was rather impractical because it meant plat_mem_setup had to 453 * get away without any kind of memory allocator. To keep old code from 454 * breaking plat_setup was just renamed to plat_setup and a second platform 455 * initialization hook for anything else was introduced. 456 */ 457 458 static int usermem __initdata; 459 460 static int __init early_parse_mem(char *p) 461 { 462 unsigned long start, size; 463 464 /* 465 * If a user specifies memory size, we 466 * blow away any automatically generated 467 * size. 468 */ 469 if (usermem == 0) { 470 boot_mem_map.nr_map = 0; 471 usermem = 1; 472 } 473 start = 0; 474 size = memparse(p, &p); 475 if (*p == '@') 476 start = memparse(p + 1, &p); 477 478 add_memory_region(start, size, BOOT_MEM_RAM); 479 return 0; 480 } 481 early_param("mem", early_parse_mem); 482 483 #ifdef CONFIG_PROC_VMCORE 484 unsigned long setup_elfcorehdr, setup_elfcorehdr_size; 485 static int __init early_parse_elfcorehdr(char *p) 486 { 487 int i; 488 489 setup_elfcorehdr = memparse(p, &p); 490 491 for (i = 0; i < boot_mem_map.nr_map; i++) { 492 unsigned long start = boot_mem_map.map[i].addr; 493 unsigned long end = (boot_mem_map.map[i].addr + 494 boot_mem_map.map[i].size); 495 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) { 496 /* 497 * Reserve from the elf core header to the end of 498 * the memory segment, that should all be kdump 499 * reserved memory. 500 */ 501 setup_elfcorehdr_size = end - setup_elfcorehdr; 502 break; 503 } 504 } 505 /* 506 * If we don't find it in the memory map, then we shouldn't 507 * have to worry about it, as the new kernel won't use it. 508 */ 509 return 0; 510 } 511 early_param("elfcorehdr", early_parse_elfcorehdr); 512 #endif 513 514 static void __init arch_mem_addpart(phys_t mem, phys_t end, int type) 515 { 516 phys_t size; 517 int i; 518 519 size = end - mem; 520 if (!size) 521 return; 522 523 /* Make sure it is in the boot_mem_map */ 524 for (i = 0; i < boot_mem_map.nr_map; i++) { 525 if (mem >= boot_mem_map.map[i].addr && 526 mem < (boot_mem_map.map[i].addr + 527 boot_mem_map.map[i].size)) 528 return; 529 } 530 add_memory_region(mem, size, type); 531 } 532 533 static void __init arch_mem_init(char **cmdline_p) 534 { 535 extern void plat_mem_setup(void); 536 537 /* call board setup routine */ 538 plat_mem_setup(); 539 540 /* 541 * Make sure all kernel memory is in the maps. The "UP" and 542 * "DOWN" are opposite for initdata since if it crosses over 543 * into another memory section you don't want that to be 544 * freed when the initdata is freed. 545 */ 546 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT, 547 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT, 548 BOOT_MEM_RAM); 549 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT, 550 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT, 551 BOOT_MEM_INIT_RAM); 552 553 pr_info("Determined physical RAM map:\n"); 554 print_memory_map(); 555 556 #ifdef CONFIG_CMDLINE_BOOL 557 #ifdef CONFIG_CMDLINE_OVERRIDE 558 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 559 #else 560 if (builtin_cmdline[0]) { 561 strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE); 562 strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE); 563 } 564 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 565 #endif 566 #else 567 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 568 #endif 569 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 570 571 *cmdline_p = command_line; 572 573 parse_early_param(); 574 575 if (usermem) { 576 pr_info("User-defined physical RAM map:\n"); 577 print_memory_map(); 578 } 579 580 bootmem_init(); 581 #ifdef CONFIG_PROC_VMCORE 582 if (setup_elfcorehdr && setup_elfcorehdr_size) { 583 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n", 584 setup_elfcorehdr, setup_elfcorehdr_size); 585 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size, 586 BOOTMEM_DEFAULT); 587 } 588 #endif 589 #ifdef CONFIG_KEXEC 590 if (crashk_res.start != crashk_res.end) 591 reserve_bootmem(crashk_res.start, 592 crashk_res.end - crashk_res.start + 1, 593 BOOTMEM_DEFAULT); 594 #endif 595 device_tree_init(); 596 sparse_init(); 597 plat_swiotlb_setup(); 598 paging_init(); 599 } 600 601 #ifdef CONFIG_KEXEC 602 static inline unsigned long long get_total_mem(void) 603 { 604 unsigned long long total; 605 606 total = max_pfn - min_low_pfn; 607 return total << PAGE_SHIFT; 608 } 609 610 static void __init mips_parse_crashkernel(void) 611 { 612 unsigned long long total_mem; 613 unsigned long long crash_size, crash_base; 614 int ret; 615 616 total_mem = get_total_mem(); 617 ret = parse_crashkernel(boot_command_line, total_mem, 618 &crash_size, &crash_base); 619 if (ret != 0 || crash_size <= 0) 620 return; 621 622 crashk_res.start = crash_base; 623 crashk_res.end = crash_base + crash_size - 1; 624 } 625 626 static void __init request_crashkernel(struct resource *res) 627 { 628 int ret; 629 630 ret = request_resource(res, &crashk_res); 631 if (!ret) 632 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n", 633 (unsigned long)((crashk_res.end - 634 crashk_res.start + 1) >> 20), 635 (unsigned long)(crashk_res.start >> 20)); 636 } 637 #else /* !defined(CONFIG_KEXEC) */ 638 static void __init mips_parse_crashkernel(void) 639 { 640 } 641 642 static void __init request_crashkernel(struct resource *res) 643 { 644 } 645 #endif /* !defined(CONFIG_KEXEC) */ 646 647 static void __init resource_init(void) 648 { 649 int i; 650 651 if (UNCAC_BASE != IO_BASE) 652 return; 653 654 code_resource.start = __pa_symbol(&_text); 655 code_resource.end = __pa_symbol(&_etext) - 1; 656 data_resource.start = __pa_symbol(&_etext); 657 data_resource.end = __pa_symbol(&_edata) - 1; 658 659 /* 660 * Request address space for all standard RAM. 661 */ 662 mips_parse_crashkernel(); 663 664 for (i = 0; i < boot_mem_map.nr_map; i++) { 665 struct resource *res; 666 unsigned long start, end; 667 668 start = boot_mem_map.map[i].addr; 669 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; 670 if (start >= HIGHMEM_START) 671 continue; 672 if (end >= HIGHMEM_START) 673 end = HIGHMEM_START - 1; 674 675 res = alloc_bootmem(sizeof(struct resource)); 676 switch (boot_mem_map.map[i].type) { 677 case BOOT_MEM_RAM: 678 case BOOT_MEM_INIT_RAM: 679 case BOOT_MEM_ROM_DATA: 680 res->name = "System RAM"; 681 break; 682 case BOOT_MEM_RESERVED: 683 default: 684 res->name = "reserved"; 685 } 686 687 res->start = start; 688 res->end = end; 689 690 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 691 request_resource(&iomem_resource, res); 692 693 /* 694 * We don't know which RAM region contains kernel data, 695 * so we try it repeatedly and let the resource manager 696 * test it. 697 */ 698 request_resource(res, &code_resource); 699 request_resource(res, &data_resource); 700 request_crashkernel(res); 701 } 702 } 703 704 void __init setup_arch(char **cmdline_p) 705 { 706 cpu_probe(); 707 prom_init(); 708 709 #ifdef CONFIG_EARLY_PRINTK 710 setup_early_printk(); 711 #endif 712 cpu_report(); 713 check_bugs_early(); 714 715 #if defined(CONFIG_VT) 716 #if defined(CONFIG_VGA_CONSOLE) 717 conswitchp = &vga_con; 718 #elif defined(CONFIG_DUMMY_CONSOLE) 719 conswitchp = &dummy_con; 720 #endif 721 #endif 722 723 arch_mem_init(cmdline_p); 724 725 resource_init(); 726 plat_smp_setup(); 727 728 cpu_cache_init(); 729 } 730 731 unsigned long kernelsp[NR_CPUS]; 732 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; 733 734 #ifdef CONFIG_DEBUG_FS 735 struct dentry *mips_debugfs_dir; 736 static int __init debugfs_mips(void) 737 { 738 struct dentry *d; 739 740 d = debugfs_create_dir("mips", NULL); 741 if (!d) 742 return -ENOMEM; 743 mips_debugfs_dir = d; 744 return 0; 745 } 746 arch_initcall(debugfs_mips); 747 #endif 748