xref: /openbmc/linux/arch/mips/kernel/setup.c (revision 93d90ad7)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007	 Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 #include <linux/kexec.h>
26 #include <linux/sizes.h>
27 #include <linux/device.h>
28 #include <linux/dma-contiguous.h>
29 
30 #include <asm/addrspace.h>
31 #include <asm/bootinfo.h>
32 #include <asm/bugs.h>
33 #include <asm/cache.h>
34 #include <asm/cpu.h>
35 #include <asm/sections.h>
36 #include <asm/setup.h>
37 #include <asm/smp-ops.h>
38 #include <asm/prom.h>
39 
40 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
41 
42 EXPORT_SYMBOL(cpu_data);
43 
44 #ifdef CONFIG_VT
45 struct screen_info screen_info;
46 #endif
47 
48 /*
49  * Despite it's name this variable is even if we don't have PCI
50  */
51 unsigned int PCI_DMA_BUS_IS_PHYS;
52 
53 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
54 
55 /*
56  * Setup information
57  *
58  * These are initialized so they are in the .data section
59  */
60 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
61 
62 EXPORT_SYMBOL(mips_machtype);
63 
64 struct boot_mem_map boot_mem_map;
65 
66 static char __initdata command_line[COMMAND_LINE_SIZE];
67 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
68 
69 #ifdef CONFIG_CMDLINE_BOOL
70 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
71 #endif
72 
73 /*
74  * mips_io_port_base is the begin of the address space to which x86 style
75  * I/O ports are mapped.
76  */
77 const unsigned long mips_io_port_base = -1;
78 EXPORT_SYMBOL(mips_io_port_base);
79 
80 static struct resource code_resource = { .name = "Kernel code", };
81 static struct resource data_resource = { .name = "Kernel data", };
82 
83 static void *detect_magic __initdata = detect_memory_region;
84 
85 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
86 {
87 	int x = boot_mem_map.nr_map;
88 	int i;
89 
90 	/* Sanity check */
91 	if (start + size < start) {
92 		pr_warn("Trying to add an invalid memory region, skipped\n");
93 		return;
94 	}
95 
96 	/*
97 	 * Try to merge with existing entry, if any.
98 	 */
99 	for (i = 0; i < boot_mem_map.nr_map; i++) {
100 		struct boot_mem_map_entry *entry = boot_mem_map.map + i;
101 		unsigned long top;
102 
103 		if (entry->type != type)
104 			continue;
105 
106 		if (start + size < entry->addr)
107 			continue;			/* no overlap */
108 
109 		if (entry->addr + entry->size < start)
110 			continue;			/* no overlap */
111 
112 		top = max(entry->addr + entry->size, start + size);
113 		entry->addr = min(entry->addr, start);
114 		entry->size = top - entry->addr;
115 
116 		return;
117 	}
118 
119 	if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
120 		pr_err("Ooops! Too many entries in the memory map!\n");
121 		return;
122 	}
123 
124 	boot_mem_map.map[x].addr = start;
125 	boot_mem_map.map[x].size = size;
126 	boot_mem_map.map[x].type = type;
127 	boot_mem_map.nr_map++;
128 }
129 
130 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
131 {
132 	void *dm = &detect_magic;
133 	phys_addr_t size;
134 
135 	for (size = sz_min; size < sz_max; size <<= 1) {
136 		if (!memcmp(dm, dm + size, sizeof(detect_magic)))
137 			break;
138 	}
139 
140 	pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
141 		((unsigned long long) size) / SZ_1M,
142 		(unsigned long long) start,
143 		((unsigned long long) sz_min) / SZ_1M,
144 		((unsigned long long) sz_max) / SZ_1M);
145 
146 	add_memory_region(start, size, BOOT_MEM_RAM);
147 }
148 
149 static void __init print_memory_map(void)
150 {
151 	int i;
152 	const int field = 2 * sizeof(unsigned long);
153 
154 	for (i = 0; i < boot_mem_map.nr_map; i++) {
155 		printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
156 		       field, (unsigned long long) boot_mem_map.map[i].size,
157 		       field, (unsigned long long) boot_mem_map.map[i].addr);
158 
159 		switch (boot_mem_map.map[i].type) {
160 		case BOOT_MEM_RAM:
161 			printk(KERN_CONT "(usable)\n");
162 			break;
163 		case BOOT_MEM_INIT_RAM:
164 			printk(KERN_CONT "(usable after init)\n");
165 			break;
166 		case BOOT_MEM_ROM_DATA:
167 			printk(KERN_CONT "(ROM data)\n");
168 			break;
169 		case BOOT_MEM_RESERVED:
170 			printk(KERN_CONT "(reserved)\n");
171 			break;
172 		default:
173 			printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
174 			break;
175 		}
176 	}
177 }
178 
179 /*
180  * Manage initrd
181  */
182 #ifdef CONFIG_BLK_DEV_INITRD
183 
184 static int __init rd_start_early(char *p)
185 {
186 	unsigned long start = memparse(p, &p);
187 
188 #ifdef CONFIG_64BIT
189 	/* Guess if the sign extension was forgotten by bootloader */
190 	if (start < XKPHYS)
191 		start = (int)start;
192 #endif
193 	initrd_start = start;
194 	initrd_end += start;
195 	return 0;
196 }
197 early_param("rd_start", rd_start_early);
198 
199 static int __init rd_size_early(char *p)
200 {
201 	initrd_end += memparse(p, &p);
202 	return 0;
203 }
204 early_param("rd_size", rd_size_early);
205 
206 /* it returns the next free pfn after initrd */
207 static unsigned long __init init_initrd(void)
208 {
209 	unsigned long end;
210 
211 	/*
212 	 * Board specific code or command line parser should have
213 	 * already set up initrd_start and initrd_end. In these cases
214 	 * perfom sanity checks and use them if all looks good.
215 	 */
216 	if (!initrd_start || initrd_end <= initrd_start)
217 		goto disable;
218 
219 	if (initrd_start & ~PAGE_MASK) {
220 		pr_err("initrd start must be page aligned\n");
221 		goto disable;
222 	}
223 	if (initrd_start < PAGE_OFFSET) {
224 		pr_err("initrd start < PAGE_OFFSET\n");
225 		goto disable;
226 	}
227 
228 	/*
229 	 * Sanitize initrd addresses. For example firmware
230 	 * can't guess if they need to pass them through
231 	 * 64-bits values if the kernel has been built in pure
232 	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
233 	 * addresses now, so the code can now safely use __pa().
234 	 */
235 	end = __pa(initrd_end);
236 	initrd_end = (unsigned long)__va(end);
237 	initrd_start = (unsigned long)__va(__pa(initrd_start));
238 
239 	ROOT_DEV = Root_RAM0;
240 	return PFN_UP(end);
241 disable:
242 	initrd_start = 0;
243 	initrd_end = 0;
244 	return 0;
245 }
246 
247 static void __init finalize_initrd(void)
248 {
249 	unsigned long size = initrd_end - initrd_start;
250 
251 	if (size == 0) {
252 		printk(KERN_INFO "Initrd not found or empty");
253 		goto disable;
254 	}
255 	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
256 		printk(KERN_ERR "Initrd extends beyond end of memory");
257 		goto disable;
258 	}
259 
260 	reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
261 	initrd_below_start_ok = 1;
262 
263 	pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
264 		initrd_start, size);
265 	return;
266 disable:
267 	printk(KERN_CONT " - disabling initrd\n");
268 	initrd_start = 0;
269 	initrd_end = 0;
270 }
271 
272 #else  /* !CONFIG_BLK_DEV_INITRD */
273 
274 static unsigned long __init init_initrd(void)
275 {
276 	return 0;
277 }
278 
279 #define finalize_initrd()	do {} while (0)
280 
281 #endif
282 
283 /*
284  * Initialize the bootmem allocator. It also setup initrd related data
285  * if needed.
286  */
287 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
288 
289 static void __init bootmem_init(void)
290 {
291 	init_initrd();
292 	finalize_initrd();
293 }
294 
295 #else  /* !CONFIG_SGI_IP27 */
296 
297 static void __init bootmem_init(void)
298 {
299 	unsigned long reserved_end;
300 	unsigned long mapstart = ~0UL;
301 	unsigned long bootmap_size;
302 	int i;
303 
304 	/*
305 	 * Sanity check any INITRD first. We don't take it into account
306 	 * for bootmem setup initially, rely on the end-of-kernel-code
307 	 * as our memory range starting point. Once bootmem is inited we
308 	 * will reserve the area used for the initrd.
309 	 */
310 	init_initrd();
311 	reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
312 
313 	/*
314 	 * max_low_pfn is not a number of pages. The number of pages
315 	 * of the system is given by 'max_low_pfn - min_low_pfn'.
316 	 */
317 	min_low_pfn = ~0UL;
318 	max_low_pfn = 0;
319 
320 	/*
321 	 * Find the highest page frame number we have available.
322 	 */
323 	for (i = 0; i < boot_mem_map.nr_map; i++) {
324 		unsigned long start, end;
325 
326 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
327 			continue;
328 
329 		start = PFN_UP(boot_mem_map.map[i].addr);
330 		end = PFN_DOWN(boot_mem_map.map[i].addr
331 				+ boot_mem_map.map[i].size);
332 
333 		if (end > max_low_pfn)
334 			max_low_pfn = end;
335 		if (start < min_low_pfn)
336 			min_low_pfn = start;
337 		if (end <= reserved_end)
338 			continue;
339 		if (start >= mapstart)
340 			continue;
341 		mapstart = max(reserved_end, start);
342 	}
343 
344 	if (min_low_pfn >= max_low_pfn)
345 		panic("Incorrect memory mapping !!!");
346 	if (min_low_pfn > ARCH_PFN_OFFSET) {
347 		pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
348 			(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
349 			min_low_pfn - ARCH_PFN_OFFSET);
350 	} else if (min_low_pfn < ARCH_PFN_OFFSET) {
351 		pr_info("%lu free pages won't be used\n",
352 			ARCH_PFN_OFFSET - min_low_pfn);
353 	}
354 	min_low_pfn = ARCH_PFN_OFFSET;
355 
356 	/*
357 	 * Determine low and high memory ranges
358 	 */
359 	max_pfn = max_low_pfn;
360 	if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
361 #ifdef CONFIG_HIGHMEM
362 		highstart_pfn = PFN_DOWN(HIGHMEM_START);
363 		highend_pfn = max_low_pfn;
364 #endif
365 		max_low_pfn = PFN_DOWN(HIGHMEM_START);
366 	}
367 
368 #ifdef CONFIG_BLK_DEV_INITRD
369 	/*
370 	 * mapstart should be after initrd_end
371 	 */
372 	if (initrd_end)
373 		mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
374 #endif
375 
376 	/*
377 	 * Initialize the boot-time allocator with low memory only.
378 	 */
379 	bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
380 					 min_low_pfn, max_low_pfn);
381 
382 
383 	for (i = 0; i < boot_mem_map.nr_map; i++) {
384 		unsigned long start, end;
385 
386 		start = PFN_UP(boot_mem_map.map[i].addr);
387 		end = PFN_DOWN(boot_mem_map.map[i].addr
388 				+ boot_mem_map.map[i].size);
389 
390 		if (start <= min_low_pfn)
391 			start = min_low_pfn;
392 		if (start >= end)
393 			continue;
394 
395 #ifndef CONFIG_HIGHMEM
396 		if (end > max_low_pfn)
397 			end = max_low_pfn;
398 
399 		/*
400 		 * ... finally, is the area going away?
401 		 */
402 		if (end <= start)
403 			continue;
404 #endif
405 
406 		memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
407 	}
408 
409 	/*
410 	 * Register fully available low RAM pages with the bootmem allocator.
411 	 */
412 	for (i = 0; i < boot_mem_map.nr_map; i++) {
413 		unsigned long start, end, size;
414 
415 		start = PFN_UP(boot_mem_map.map[i].addr);
416 		end   = PFN_DOWN(boot_mem_map.map[i].addr
417 				    + boot_mem_map.map[i].size);
418 
419 		/*
420 		 * Reserve usable memory.
421 		 */
422 		switch (boot_mem_map.map[i].type) {
423 		case BOOT_MEM_RAM:
424 			break;
425 		case BOOT_MEM_INIT_RAM:
426 			memory_present(0, start, end);
427 			continue;
428 		default:
429 			/* Not usable memory */
430 			continue;
431 		}
432 
433 		/*
434 		 * We are rounding up the start address of usable memory
435 		 * and at the end of the usable range downwards.
436 		 */
437 		if (start >= max_low_pfn)
438 			continue;
439 		if (start < reserved_end)
440 			start = reserved_end;
441 		if (end > max_low_pfn)
442 			end = max_low_pfn;
443 
444 		/*
445 		 * ... finally, is the area going away?
446 		 */
447 		if (end <= start)
448 			continue;
449 		size = end - start;
450 
451 		/* Register lowmem ranges */
452 		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
453 		memory_present(0, start, end);
454 	}
455 
456 	/*
457 	 * Reserve the bootmap memory.
458 	 */
459 	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
460 
461 	/*
462 	 * Reserve initrd memory if needed.
463 	 */
464 	finalize_initrd();
465 }
466 
467 #endif	/* CONFIG_SGI_IP27 */
468 
469 /*
470  * arch_mem_init - initialize memory management subsystem
471  *
472  *  o plat_mem_setup() detects the memory configuration and will record detected
473  *    memory areas using add_memory_region.
474  *
475  * At this stage the memory configuration of the system is known to the
476  * kernel but generic memory management system is still entirely uninitialized.
477  *
478  *  o bootmem_init()
479  *  o sparse_init()
480  *  o paging_init()
481  *  o dma_continguous_reserve()
482  *
483  * At this stage the bootmem allocator is ready to use.
484  *
485  * NOTE: historically plat_mem_setup did the entire platform initialization.
486  *	 This was rather impractical because it meant plat_mem_setup had to
487  * get away without any kind of memory allocator.  To keep old code from
488  * breaking plat_setup was just renamed to plat_mem_setup and a second platform
489  * initialization hook for anything else was introduced.
490  */
491 
492 static int usermem __initdata;
493 
494 static int __init early_parse_mem(char *p)
495 {
496 	phys_addr_t start, size;
497 
498 	/*
499 	 * If a user specifies memory size, we
500 	 * blow away any automatically generated
501 	 * size.
502 	 */
503 	if (usermem == 0) {
504 		boot_mem_map.nr_map = 0;
505 		usermem = 1;
506 	}
507 	start = 0;
508 	size = memparse(p, &p);
509 	if (*p == '@')
510 		start = memparse(p + 1, &p);
511 
512 	add_memory_region(start, size, BOOT_MEM_RAM);
513 	return 0;
514 }
515 early_param("mem", early_parse_mem);
516 
517 #ifdef CONFIG_PROC_VMCORE
518 unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
519 static int __init early_parse_elfcorehdr(char *p)
520 {
521 	int i;
522 
523 	setup_elfcorehdr = memparse(p, &p);
524 
525 	for (i = 0; i < boot_mem_map.nr_map; i++) {
526 		unsigned long start = boot_mem_map.map[i].addr;
527 		unsigned long end = (boot_mem_map.map[i].addr +
528 				     boot_mem_map.map[i].size);
529 		if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
530 			/*
531 			 * Reserve from the elf core header to the end of
532 			 * the memory segment, that should all be kdump
533 			 * reserved memory.
534 			 */
535 			setup_elfcorehdr_size = end - setup_elfcorehdr;
536 			break;
537 		}
538 	}
539 	/*
540 	 * If we don't find it in the memory map, then we shouldn't
541 	 * have to worry about it, as the new kernel won't use it.
542 	 */
543 	return 0;
544 }
545 early_param("elfcorehdr", early_parse_elfcorehdr);
546 #endif
547 
548 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
549 {
550 	phys_addr_t size;
551 	int i;
552 
553 	size = end - mem;
554 	if (!size)
555 		return;
556 
557 	/* Make sure it is in the boot_mem_map */
558 	for (i = 0; i < boot_mem_map.nr_map; i++) {
559 		if (mem >= boot_mem_map.map[i].addr &&
560 		    mem < (boot_mem_map.map[i].addr +
561 			   boot_mem_map.map[i].size))
562 			return;
563 	}
564 	add_memory_region(mem, size, type);
565 }
566 
567 #ifdef CONFIG_KEXEC
568 static inline unsigned long long get_total_mem(void)
569 {
570 	unsigned long long total;
571 
572 	total = max_pfn - min_low_pfn;
573 	return total << PAGE_SHIFT;
574 }
575 
576 static void __init mips_parse_crashkernel(void)
577 {
578 	unsigned long long total_mem;
579 	unsigned long long crash_size, crash_base;
580 	int ret;
581 
582 	total_mem = get_total_mem();
583 	ret = parse_crashkernel(boot_command_line, total_mem,
584 				&crash_size, &crash_base);
585 	if (ret != 0 || crash_size <= 0)
586 		return;
587 
588 	crashk_res.start = crash_base;
589 	crashk_res.end	 = crash_base + crash_size - 1;
590 }
591 
592 static void __init request_crashkernel(struct resource *res)
593 {
594 	int ret;
595 
596 	ret = request_resource(res, &crashk_res);
597 	if (!ret)
598 		pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
599 			(unsigned long)((crashk_res.end -
600 					 crashk_res.start + 1) >> 20),
601 			(unsigned long)(crashk_res.start  >> 20));
602 }
603 #else /* !defined(CONFIG_KEXEC)		*/
604 static void __init mips_parse_crashkernel(void)
605 {
606 }
607 
608 static void __init request_crashkernel(struct resource *res)
609 {
610 }
611 #endif /* !defined(CONFIG_KEXEC)  */
612 
613 static void __init arch_mem_init(char **cmdline_p)
614 {
615 	struct memblock_region *reg;
616 	extern void plat_mem_setup(void);
617 
618 	/* call board setup routine */
619 	plat_mem_setup();
620 
621 	/*
622 	 * Make sure all kernel memory is in the maps.  The "UP" and
623 	 * "DOWN" are opposite for initdata since if it crosses over
624 	 * into another memory section you don't want that to be
625 	 * freed when the initdata is freed.
626 	 */
627 	arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
628 			 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
629 			 BOOT_MEM_RAM);
630 	arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
631 			 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
632 			 BOOT_MEM_INIT_RAM);
633 
634 	pr_info("Determined physical RAM map:\n");
635 	print_memory_map();
636 
637 #ifdef CONFIG_CMDLINE_BOOL
638 #ifdef CONFIG_CMDLINE_OVERRIDE
639 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
640 #else
641 	if (builtin_cmdline[0]) {
642 		strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
643 		strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
644 	}
645 	strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
646 #endif
647 #else
648 	strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
649 #endif
650 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
651 
652 	*cmdline_p = command_line;
653 
654 	parse_early_param();
655 
656 	if (usermem) {
657 		pr_info("User-defined physical RAM map:\n");
658 		print_memory_map();
659 	}
660 
661 	bootmem_init();
662 #ifdef CONFIG_PROC_VMCORE
663 	if (setup_elfcorehdr && setup_elfcorehdr_size) {
664 		printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
665 		       setup_elfcorehdr, setup_elfcorehdr_size);
666 		reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
667 				BOOTMEM_DEFAULT);
668 	}
669 #endif
670 
671 	mips_parse_crashkernel();
672 #ifdef CONFIG_KEXEC
673 	if (crashk_res.start != crashk_res.end)
674 		reserve_bootmem(crashk_res.start,
675 				crashk_res.end - crashk_res.start + 1,
676 				BOOTMEM_DEFAULT);
677 #endif
678 	device_tree_init();
679 	sparse_init();
680 	plat_swiotlb_setup();
681 	paging_init();
682 
683 	dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
684 	/* Tell bootmem about cma reserved memblock section */
685 	for_each_memblock(reserved, reg)
686 		if (reg->size != 0)
687 			reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
688 }
689 
690 static void __init resource_init(void)
691 {
692 	int i;
693 
694 	if (UNCAC_BASE != IO_BASE)
695 		return;
696 
697 	code_resource.start = __pa_symbol(&_text);
698 	code_resource.end = __pa_symbol(&_etext) - 1;
699 	data_resource.start = __pa_symbol(&_etext);
700 	data_resource.end = __pa_symbol(&_edata) - 1;
701 
702 	for (i = 0; i < boot_mem_map.nr_map; i++) {
703 		struct resource *res;
704 		unsigned long start, end;
705 
706 		start = boot_mem_map.map[i].addr;
707 		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
708 		if (start >= HIGHMEM_START)
709 			continue;
710 		if (end >= HIGHMEM_START)
711 			end = HIGHMEM_START - 1;
712 
713 		res = alloc_bootmem(sizeof(struct resource));
714 		switch (boot_mem_map.map[i].type) {
715 		case BOOT_MEM_RAM:
716 		case BOOT_MEM_INIT_RAM:
717 		case BOOT_MEM_ROM_DATA:
718 			res->name = "System RAM";
719 			break;
720 		case BOOT_MEM_RESERVED:
721 		default:
722 			res->name = "reserved";
723 		}
724 
725 		res->start = start;
726 		res->end = end;
727 
728 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
729 		request_resource(&iomem_resource, res);
730 
731 		/*
732 		 *  We don't know which RAM region contains kernel data,
733 		 *  so we try it repeatedly and let the resource manager
734 		 *  test it.
735 		 */
736 		request_resource(res, &code_resource);
737 		request_resource(res, &data_resource);
738 		request_crashkernel(res);
739 	}
740 }
741 
742 #ifdef CONFIG_SMP
743 static void __init prefill_possible_map(void)
744 {
745 	int i, possible = num_possible_cpus();
746 
747 	if (possible > nr_cpu_ids)
748 		possible = nr_cpu_ids;
749 
750 	for (i = 0; i < possible; i++)
751 		set_cpu_possible(i, true);
752 	for (; i < NR_CPUS; i++)
753 		set_cpu_possible(i, false);
754 
755 	nr_cpu_ids = possible;
756 }
757 #else
758 static inline void prefill_possible_map(void) {}
759 #endif
760 
761 void __init setup_arch(char **cmdline_p)
762 {
763 	cpu_probe();
764 	prom_init();
765 
766 #ifdef CONFIG_EARLY_PRINTK
767 	setup_early_printk();
768 #endif
769 	cpu_report();
770 	check_bugs_early();
771 
772 #if defined(CONFIG_VT)
773 #if defined(CONFIG_VGA_CONSOLE)
774 	conswitchp = &vga_con;
775 #elif defined(CONFIG_DUMMY_CONSOLE)
776 	conswitchp = &dummy_con;
777 #endif
778 #endif
779 
780 	arch_mem_init(cmdline_p);
781 
782 	resource_init();
783 	plat_smp_setup();
784 	prefill_possible_map();
785 
786 	cpu_cache_init();
787 }
788 
789 unsigned long kernelsp[NR_CPUS];
790 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
791 
792 #ifdef CONFIG_DEBUG_FS
793 struct dentry *mips_debugfs_dir;
794 static int __init debugfs_mips(void)
795 {
796 	struct dentry *d;
797 
798 	d = debugfs_create_dir("mips", NULL);
799 	if (!d)
800 		return -ENOMEM;
801 	mips_debugfs_dir = d;
802 	return 0;
803 }
804 arch_initcall(debugfs_mips);
805 #endif
806