1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1995 Linus Torvalds 7 * Copyright (C) 1995 Waldorf Electronics 8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle 9 * Copyright (C) 1996 Stoned Elipot 10 * Copyright (C) 1999 Silicon Graphics, Inc. 11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki 12 */ 13 #include <linux/init.h> 14 #include <linux/ioport.h> 15 #include <linux/export.h> 16 #include <linux/screen_info.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/initrd.h> 20 #include <linux/root_dev.h> 21 #include <linux/highmem.h> 22 #include <linux/console.h> 23 #include <linux/pfn.h> 24 #include <linux/debugfs.h> 25 #include <linux/kexec.h> 26 #include <linux/sizes.h> 27 #include <linux/device.h> 28 #include <linux/dma-contiguous.h> 29 #include <linux/decompress/generic.h> 30 31 #include <asm/addrspace.h> 32 #include <asm/bootinfo.h> 33 #include <asm/bugs.h> 34 #include <asm/cache.h> 35 #include <asm/cdmm.h> 36 #include <asm/cpu.h> 37 #include <asm/debug.h> 38 #include <asm/sections.h> 39 #include <asm/setup.h> 40 #include <asm/smp-ops.h> 41 #include <asm/prom.h> 42 43 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB 44 const char __section(.appended_dtb) __appended_dtb[0x100000]; 45 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */ 46 47 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; 48 49 EXPORT_SYMBOL(cpu_data); 50 51 #ifdef CONFIG_VT 52 struct screen_info screen_info; 53 #endif 54 55 /* 56 * Setup information 57 * 58 * These are initialized so they are in the .data section 59 */ 60 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; 61 62 EXPORT_SYMBOL(mips_machtype); 63 64 struct boot_mem_map boot_mem_map; 65 66 static char __initdata command_line[COMMAND_LINE_SIZE]; 67 char __initdata arcs_cmdline[COMMAND_LINE_SIZE]; 68 69 #ifdef CONFIG_CMDLINE_BOOL 70 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 71 #endif 72 73 /* 74 * mips_io_port_base is the begin of the address space to which x86 style 75 * I/O ports are mapped. 76 */ 77 const unsigned long mips_io_port_base = -1; 78 EXPORT_SYMBOL(mips_io_port_base); 79 80 static struct resource code_resource = { .name = "Kernel code", }; 81 static struct resource data_resource = { .name = "Kernel data", }; 82 83 static void *detect_magic __initdata = detect_memory_region; 84 85 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type) 86 { 87 int x = boot_mem_map.nr_map; 88 int i; 89 90 /* 91 * If the region reaches the top of the physical address space, adjust 92 * the size slightly so that (start + size) doesn't overflow 93 */ 94 if (start + size - 1 == (phys_addr_t)ULLONG_MAX) 95 --size; 96 97 /* Sanity check */ 98 if (start + size < start) { 99 pr_warn("Trying to add an invalid memory region, skipped\n"); 100 return; 101 } 102 103 /* 104 * Try to merge with existing entry, if any. 105 */ 106 for (i = 0; i < boot_mem_map.nr_map; i++) { 107 struct boot_mem_map_entry *entry = boot_mem_map.map + i; 108 unsigned long top; 109 110 if (entry->type != type) 111 continue; 112 113 if (start + size < entry->addr) 114 continue; /* no overlap */ 115 116 if (entry->addr + entry->size < start) 117 continue; /* no overlap */ 118 119 top = max(entry->addr + entry->size, start + size); 120 entry->addr = min(entry->addr, start); 121 entry->size = top - entry->addr; 122 123 return; 124 } 125 126 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) { 127 pr_err("Ooops! Too many entries in the memory map!\n"); 128 return; 129 } 130 131 boot_mem_map.map[x].addr = start; 132 boot_mem_map.map[x].size = size; 133 boot_mem_map.map[x].type = type; 134 boot_mem_map.nr_map++; 135 } 136 137 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max) 138 { 139 void *dm = &detect_magic; 140 phys_addr_t size; 141 142 for (size = sz_min; size < sz_max; size <<= 1) { 143 if (!memcmp(dm, dm + size, sizeof(detect_magic))) 144 break; 145 } 146 147 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n", 148 ((unsigned long long) size) / SZ_1M, 149 (unsigned long long) start, 150 ((unsigned long long) sz_min) / SZ_1M, 151 ((unsigned long long) sz_max) / SZ_1M); 152 153 add_memory_region(start, size, BOOT_MEM_RAM); 154 } 155 156 static void __init print_memory_map(void) 157 { 158 int i; 159 const int field = 2 * sizeof(unsigned long); 160 161 for (i = 0; i < boot_mem_map.nr_map; i++) { 162 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ", 163 field, (unsigned long long) boot_mem_map.map[i].size, 164 field, (unsigned long long) boot_mem_map.map[i].addr); 165 166 switch (boot_mem_map.map[i].type) { 167 case BOOT_MEM_RAM: 168 printk(KERN_CONT "(usable)\n"); 169 break; 170 case BOOT_MEM_INIT_RAM: 171 printk(KERN_CONT "(usable after init)\n"); 172 break; 173 case BOOT_MEM_ROM_DATA: 174 printk(KERN_CONT "(ROM data)\n"); 175 break; 176 case BOOT_MEM_RESERVED: 177 printk(KERN_CONT "(reserved)\n"); 178 break; 179 default: 180 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type); 181 break; 182 } 183 } 184 } 185 186 /* 187 * Manage initrd 188 */ 189 #ifdef CONFIG_BLK_DEV_INITRD 190 191 static int __init rd_start_early(char *p) 192 { 193 unsigned long start = memparse(p, &p); 194 195 #ifdef CONFIG_64BIT 196 /* Guess if the sign extension was forgotten by bootloader */ 197 if (start < XKPHYS) 198 start = (int)start; 199 #endif 200 initrd_start = start; 201 initrd_end += start; 202 return 0; 203 } 204 early_param("rd_start", rd_start_early); 205 206 static int __init rd_size_early(char *p) 207 { 208 initrd_end += memparse(p, &p); 209 return 0; 210 } 211 early_param("rd_size", rd_size_early); 212 213 /* it returns the next free pfn after initrd */ 214 static unsigned long __init init_initrd(void) 215 { 216 unsigned long end; 217 218 /* 219 * Board specific code or command line parser should have 220 * already set up initrd_start and initrd_end. In these cases 221 * perfom sanity checks and use them if all looks good. 222 */ 223 if (!initrd_start || initrd_end <= initrd_start) 224 goto disable; 225 226 if (initrd_start & ~PAGE_MASK) { 227 pr_err("initrd start must be page aligned\n"); 228 goto disable; 229 } 230 if (initrd_start < PAGE_OFFSET) { 231 pr_err("initrd start < PAGE_OFFSET\n"); 232 goto disable; 233 } 234 235 /* 236 * Sanitize initrd addresses. For example firmware 237 * can't guess if they need to pass them through 238 * 64-bits values if the kernel has been built in pure 239 * 32-bit. We need also to switch from KSEG0 to XKPHYS 240 * addresses now, so the code can now safely use __pa(). 241 */ 242 end = __pa(initrd_end); 243 initrd_end = (unsigned long)__va(end); 244 initrd_start = (unsigned long)__va(__pa(initrd_start)); 245 246 ROOT_DEV = Root_RAM0; 247 return PFN_UP(end); 248 disable: 249 initrd_start = 0; 250 initrd_end = 0; 251 return 0; 252 } 253 254 /* In some conditions (e.g. big endian bootloader with a little endian 255 kernel), the initrd might appear byte swapped. Try to detect this and 256 byte swap it if needed. */ 257 static void __init maybe_bswap_initrd(void) 258 { 259 #if defined(CONFIG_CPU_CAVIUM_OCTEON) 260 u64 buf; 261 262 /* Check for CPIO signature */ 263 if (!memcmp((void *)initrd_start, "070701", 6)) 264 return; 265 266 /* Check for compressed initrd */ 267 if (decompress_method((unsigned char *)initrd_start, 8, NULL)) 268 return; 269 270 /* Try again with a byte swapped header */ 271 buf = swab64p((u64 *)initrd_start); 272 if (!memcmp(&buf, "070701", 6) || 273 decompress_method((unsigned char *)(&buf), 8, NULL)) { 274 unsigned long i; 275 276 pr_info("Byteswapped initrd detected\n"); 277 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8) 278 swab64s((u64 *)i); 279 } 280 #endif 281 } 282 283 static void __init finalize_initrd(void) 284 { 285 unsigned long size = initrd_end - initrd_start; 286 287 if (size == 0) { 288 printk(KERN_INFO "Initrd not found or empty"); 289 goto disable; 290 } 291 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { 292 printk(KERN_ERR "Initrd extends beyond end of memory"); 293 goto disable; 294 } 295 296 maybe_bswap_initrd(); 297 298 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT); 299 initrd_below_start_ok = 1; 300 301 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", 302 initrd_start, size); 303 return; 304 disable: 305 printk(KERN_CONT " - disabling initrd\n"); 306 initrd_start = 0; 307 initrd_end = 0; 308 } 309 310 #else /* !CONFIG_BLK_DEV_INITRD */ 311 312 static unsigned long __init init_initrd(void) 313 { 314 return 0; 315 } 316 317 #define finalize_initrd() do {} while (0) 318 319 #endif 320 321 /* 322 * Initialize the bootmem allocator. It also setup initrd related data 323 * if needed. 324 */ 325 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA)) 326 327 static void __init bootmem_init(void) 328 { 329 init_initrd(); 330 finalize_initrd(); 331 } 332 333 #else /* !CONFIG_SGI_IP27 */ 334 335 static void __init bootmem_init(void) 336 { 337 unsigned long reserved_end; 338 unsigned long mapstart = ~0UL; 339 unsigned long bootmap_size; 340 int i; 341 342 /* 343 * Sanity check any INITRD first. We don't take it into account 344 * for bootmem setup initially, rely on the end-of-kernel-code 345 * as our memory range starting point. Once bootmem is inited we 346 * will reserve the area used for the initrd. 347 */ 348 init_initrd(); 349 reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end)); 350 351 /* 352 * max_low_pfn is not a number of pages. The number of pages 353 * of the system is given by 'max_low_pfn - min_low_pfn'. 354 */ 355 min_low_pfn = ~0UL; 356 max_low_pfn = 0; 357 358 /* 359 * Find the highest page frame number we have available. 360 */ 361 for (i = 0; i < boot_mem_map.nr_map; i++) { 362 unsigned long start, end; 363 364 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) 365 continue; 366 367 start = PFN_UP(boot_mem_map.map[i].addr); 368 end = PFN_DOWN(boot_mem_map.map[i].addr 369 + boot_mem_map.map[i].size); 370 371 #ifndef CONFIG_HIGHMEM 372 /* 373 * Skip highmem here so we get an accurate max_low_pfn if low 374 * memory stops short of high memory. 375 * If the region overlaps HIGHMEM_START, end is clipped so 376 * max_pfn excludes the highmem portion. 377 */ 378 if (start >= PFN_DOWN(HIGHMEM_START)) 379 continue; 380 if (end > PFN_DOWN(HIGHMEM_START)) 381 end = PFN_DOWN(HIGHMEM_START); 382 #endif 383 384 if (end > max_low_pfn) 385 max_low_pfn = end; 386 if (start < min_low_pfn) 387 min_low_pfn = start; 388 if (end <= reserved_end) 389 continue; 390 #ifdef CONFIG_BLK_DEV_INITRD 391 /* Skip zones before initrd and initrd itself */ 392 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end))) 393 continue; 394 #endif 395 if (start >= mapstart) 396 continue; 397 mapstart = max(reserved_end, start); 398 } 399 400 if (min_low_pfn >= max_low_pfn) 401 panic("Incorrect memory mapping !!!"); 402 if (min_low_pfn > ARCH_PFN_OFFSET) { 403 pr_info("Wasting %lu bytes for tracking %lu unused pages\n", 404 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page), 405 min_low_pfn - ARCH_PFN_OFFSET); 406 } else if (min_low_pfn < ARCH_PFN_OFFSET) { 407 pr_info("%lu free pages won't be used\n", 408 ARCH_PFN_OFFSET - min_low_pfn); 409 } 410 min_low_pfn = ARCH_PFN_OFFSET; 411 412 /* 413 * Determine low and high memory ranges 414 */ 415 max_pfn = max_low_pfn; 416 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { 417 #ifdef CONFIG_HIGHMEM 418 highstart_pfn = PFN_DOWN(HIGHMEM_START); 419 highend_pfn = max_low_pfn; 420 #endif 421 max_low_pfn = PFN_DOWN(HIGHMEM_START); 422 } 423 424 #ifdef CONFIG_BLK_DEV_INITRD 425 /* 426 * mapstart should be after initrd_end 427 */ 428 if (initrd_end) 429 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end))); 430 #endif 431 432 /* 433 * Initialize the boot-time allocator with low memory only. 434 */ 435 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart, 436 min_low_pfn, max_low_pfn); 437 438 439 for (i = 0; i < boot_mem_map.nr_map; i++) { 440 unsigned long start, end; 441 442 start = PFN_UP(boot_mem_map.map[i].addr); 443 end = PFN_DOWN(boot_mem_map.map[i].addr 444 + boot_mem_map.map[i].size); 445 446 if (start <= min_low_pfn) 447 start = min_low_pfn; 448 if (start >= end) 449 continue; 450 451 #ifndef CONFIG_HIGHMEM 452 if (end > max_low_pfn) 453 end = max_low_pfn; 454 455 /* 456 * ... finally, is the area going away? 457 */ 458 if (end <= start) 459 continue; 460 #endif 461 462 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0); 463 } 464 465 /* 466 * Register fully available low RAM pages with the bootmem allocator. 467 */ 468 for (i = 0; i < boot_mem_map.nr_map; i++) { 469 unsigned long start, end, size; 470 471 start = PFN_UP(boot_mem_map.map[i].addr); 472 end = PFN_DOWN(boot_mem_map.map[i].addr 473 + boot_mem_map.map[i].size); 474 475 /* 476 * Reserve usable memory. 477 */ 478 switch (boot_mem_map.map[i].type) { 479 case BOOT_MEM_RAM: 480 break; 481 case BOOT_MEM_INIT_RAM: 482 memory_present(0, start, end); 483 continue; 484 default: 485 /* Not usable memory */ 486 continue; 487 } 488 489 /* 490 * We are rounding up the start address of usable memory 491 * and at the end of the usable range downwards. 492 */ 493 if (start >= max_low_pfn) 494 continue; 495 if (start < reserved_end) 496 start = reserved_end; 497 if (end > max_low_pfn) 498 end = max_low_pfn; 499 500 /* 501 * ... finally, is the area going away? 502 */ 503 if (end <= start) 504 continue; 505 size = end - start; 506 507 /* Register lowmem ranges */ 508 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT); 509 memory_present(0, start, end); 510 } 511 512 /* 513 * Reserve the bootmap memory. 514 */ 515 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT); 516 517 #ifdef CONFIG_RELOCATABLE 518 /* 519 * The kernel reserves all memory below its _end symbol as bootmem, 520 * but the kernel may now be at a much higher address. The memory 521 * between the original and new locations may be returned to the system. 522 */ 523 if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) { 524 unsigned long offset; 525 extern void show_kernel_relocation(const char *level); 526 527 offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS); 528 free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset); 529 530 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO) 531 /* 532 * This information is necessary when debugging the kernel 533 * But is a security vulnerability otherwise! 534 */ 535 show_kernel_relocation(KERN_INFO); 536 #endif 537 } 538 #endif 539 540 /* 541 * Reserve initrd memory if needed. 542 */ 543 finalize_initrd(); 544 } 545 546 #endif /* CONFIG_SGI_IP27 */ 547 548 /* 549 * arch_mem_init - initialize memory management subsystem 550 * 551 * o plat_mem_setup() detects the memory configuration and will record detected 552 * memory areas using add_memory_region. 553 * 554 * At this stage the memory configuration of the system is known to the 555 * kernel but generic memory management system is still entirely uninitialized. 556 * 557 * o bootmem_init() 558 * o sparse_init() 559 * o paging_init() 560 * o dma_contiguous_reserve() 561 * 562 * At this stage the bootmem allocator is ready to use. 563 * 564 * NOTE: historically plat_mem_setup did the entire platform initialization. 565 * This was rather impractical because it meant plat_mem_setup had to 566 * get away without any kind of memory allocator. To keep old code from 567 * breaking plat_setup was just renamed to plat_mem_setup and a second platform 568 * initialization hook for anything else was introduced. 569 */ 570 571 static int usermem __initdata; 572 573 static int __init early_parse_mem(char *p) 574 { 575 phys_addr_t start, size; 576 577 /* 578 * If a user specifies memory size, we 579 * blow away any automatically generated 580 * size. 581 */ 582 if (usermem == 0) { 583 boot_mem_map.nr_map = 0; 584 usermem = 1; 585 } 586 start = 0; 587 size = memparse(p, &p); 588 if (*p == '@') 589 start = memparse(p + 1, &p); 590 591 add_memory_region(start, size, BOOT_MEM_RAM); 592 return 0; 593 } 594 early_param("mem", early_parse_mem); 595 596 #ifdef CONFIG_PROC_VMCORE 597 unsigned long setup_elfcorehdr, setup_elfcorehdr_size; 598 static int __init early_parse_elfcorehdr(char *p) 599 { 600 int i; 601 602 setup_elfcorehdr = memparse(p, &p); 603 604 for (i = 0; i < boot_mem_map.nr_map; i++) { 605 unsigned long start = boot_mem_map.map[i].addr; 606 unsigned long end = (boot_mem_map.map[i].addr + 607 boot_mem_map.map[i].size); 608 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) { 609 /* 610 * Reserve from the elf core header to the end of 611 * the memory segment, that should all be kdump 612 * reserved memory. 613 */ 614 setup_elfcorehdr_size = end - setup_elfcorehdr; 615 break; 616 } 617 } 618 /* 619 * If we don't find it in the memory map, then we shouldn't 620 * have to worry about it, as the new kernel won't use it. 621 */ 622 return 0; 623 } 624 early_param("elfcorehdr", early_parse_elfcorehdr); 625 #endif 626 627 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type) 628 { 629 phys_addr_t size; 630 int i; 631 632 size = end - mem; 633 if (!size) 634 return; 635 636 /* Make sure it is in the boot_mem_map */ 637 for (i = 0; i < boot_mem_map.nr_map; i++) { 638 if (mem >= boot_mem_map.map[i].addr && 639 mem < (boot_mem_map.map[i].addr + 640 boot_mem_map.map[i].size)) 641 return; 642 } 643 add_memory_region(mem, size, type); 644 } 645 646 #ifdef CONFIG_KEXEC 647 static inline unsigned long long get_total_mem(void) 648 { 649 unsigned long long total; 650 651 total = max_pfn - min_low_pfn; 652 return total << PAGE_SHIFT; 653 } 654 655 static void __init mips_parse_crashkernel(void) 656 { 657 unsigned long long total_mem; 658 unsigned long long crash_size, crash_base; 659 int ret; 660 661 total_mem = get_total_mem(); 662 ret = parse_crashkernel(boot_command_line, total_mem, 663 &crash_size, &crash_base); 664 if (ret != 0 || crash_size <= 0) 665 return; 666 667 crashk_res.start = crash_base; 668 crashk_res.end = crash_base + crash_size - 1; 669 } 670 671 static void __init request_crashkernel(struct resource *res) 672 { 673 int ret; 674 675 ret = request_resource(res, &crashk_res); 676 if (!ret) 677 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n", 678 (unsigned long)((crashk_res.end - 679 crashk_res.start + 1) >> 20), 680 (unsigned long)(crashk_res.start >> 20)); 681 } 682 #else /* !defined(CONFIG_KEXEC) */ 683 static void __init mips_parse_crashkernel(void) 684 { 685 } 686 687 static void __init request_crashkernel(struct resource *res) 688 { 689 } 690 #endif /* !defined(CONFIG_KEXEC) */ 691 692 #define USE_PROM_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER) 693 #define USE_DTB_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB) 694 #define EXTEND_WITH_PROM IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND) 695 #define BUILTIN_EXTEND_WITH_PROM \ 696 IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND) 697 698 static void __init arch_mem_init(char **cmdline_p) 699 { 700 struct memblock_region *reg; 701 extern void plat_mem_setup(void); 702 703 /* call board setup routine */ 704 plat_mem_setup(); 705 706 /* 707 * Make sure all kernel memory is in the maps. The "UP" and 708 * "DOWN" are opposite for initdata since if it crosses over 709 * into another memory section you don't want that to be 710 * freed when the initdata is freed. 711 */ 712 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT, 713 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT, 714 BOOT_MEM_RAM); 715 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT, 716 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT, 717 BOOT_MEM_INIT_RAM); 718 719 pr_info("Determined physical RAM map:\n"); 720 print_memory_map(); 721 722 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE) 723 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 724 #else 725 if ((USE_PROM_CMDLINE && arcs_cmdline[0]) || 726 (USE_DTB_CMDLINE && !boot_command_line[0])) 727 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 728 729 if (EXTEND_WITH_PROM && arcs_cmdline[0]) { 730 if (boot_command_line[0]) 731 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); 732 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 733 } 734 735 #if defined(CONFIG_CMDLINE_BOOL) 736 if (builtin_cmdline[0]) { 737 if (boot_command_line[0]) 738 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); 739 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 740 } 741 742 if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) { 743 if (boot_command_line[0]) 744 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); 745 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 746 } 747 #endif 748 #endif 749 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 750 751 *cmdline_p = command_line; 752 753 parse_early_param(); 754 755 if (usermem) { 756 pr_info("User-defined physical RAM map:\n"); 757 print_memory_map(); 758 } 759 760 bootmem_init(); 761 #ifdef CONFIG_PROC_VMCORE 762 if (setup_elfcorehdr && setup_elfcorehdr_size) { 763 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n", 764 setup_elfcorehdr, setup_elfcorehdr_size); 765 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size, 766 BOOTMEM_DEFAULT); 767 } 768 #endif 769 770 mips_parse_crashkernel(); 771 #ifdef CONFIG_KEXEC 772 if (crashk_res.start != crashk_res.end) 773 reserve_bootmem(crashk_res.start, 774 crashk_res.end - crashk_res.start + 1, 775 BOOTMEM_DEFAULT); 776 #endif 777 device_tree_init(); 778 sparse_init(); 779 plat_swiotlb_setup(); 780 781 dma_contiguous_reserve(PFN_PHYS(max_low_pfn)); 782 /* Tell bootmem about cma reserved memblock section */ 783 for_each_memblock(reserved, reg) 784 if (reg->size != 0) 785 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT); 786 787 reserve_bootmem_region(__pa_symbol(&__nosave_begin), 788 __pa_symbol(&__nosave_end)); /* Reserve for hibernation */ 789 } 790 791 static void __init resource_init(void) 792 { 793 int i; 794 795 if (UNCAC_BASE != IO_BASE) 796 return; 797 798 code_resource.start = __pa_symbol(&_text); 799 code_resource.end = __pa_symbol(&_etext) - 1; 800 data_resource.start = __pa_symbol(&_etext); 801 data_resource.end = __pa_symbol(&_edata) - 1; 802 803 for (i = 0; i < boot_mem_map.nr_map; i++) { 804 struct resource *res; 805 unsigned long start, end; 806 807 start = boot_mem_map.map[i].addr; 808 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; 809 if (start >= HIGHMEM_START) 810 continue; 811 if (end >= HIGHMEM_START) 812 end = HIGHMEM_START - 1; 813 814 res = alloc_bootmem(sizeof(struct resource)); 815 816 res->start = start; 817 res->end = end; 818 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 819 820 switch (boot_mem_map.map[i].type) { 821 case BOOT_MEM_RAM: 822 case BOOT_MEM_INIT_RAM: 823 case BOOT_MEM_ROM_DATA: 824 res->name = "System RAM"; 825 res->flags |= IORESOURCE_SYSRAM; 826 break; 827 case BOOT_MEM_RESERVED: 828 default: 829 res->name = "reserved"; 830 } 831 832 request_resource(&iomem_resource, res); 833 834 /* 835 * We don't know which RAM region contains kernel data, 836 * so we try it repeatedly and let the resource manager 837 * test it. 838 */ 839 request_resource(res, &code_resource); 840 request_resource(res, &data_resource); 841 request_crashkernel(res); 842 } 843 } 844 845 #ifdef CONFIG_SMP 846 static void __init prefill_possible_map(void) 847 { 848 int i, possible = num_possible_cpus(); 849 850 if (possible > nr_cpu_ids) 851 possible = nr_cpu_ids; 852 853 for (i = 0; i < possible; i++) 854 set_cpu_possible(i, true); 855 for (; i < NR_CPUS; i++) 856 set_cpu_possible(i, false); 857 858 nr_cpu_ids = possible; 859 } 860 #else 861 static inline void prefill_possible_map(void) {} 862 #endif 863 864 void __init setup_arch(char **cmdline_p) 865 { 866 cpu_probe(); 867 mips_cm_probe(); 868 prom_init(); 869 870 setup_early_fdc_console(); 871 #ifdef CONFIG_EARLY_PRINTK 872 setup_early_printk(); 873 #endif 874 cpu_report(); 875 check_bugs_early(); 876 877 #if defined(CONFIG_VT) 878 #if defined(CONFIG_VGA_CONSOLE) 879 conswitchp = &vga_con; 880 #elif defined(CONFIG_DUMMY_CONSOLE) 881 conswitchp = &dummy_con; 882 #endif 883 #endif 884 885 arch_mem_init(cmdline_p); 886 887 resource_init(); 888 plat_smp_setup(); 889 prefill_possible_map(); 890 891 cpu_cache_init(); 892 paging_init(); 893 } 894 895 unsigned long kernelsp[NR_CPUS]; 896 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; 897 898 #ifdef CONFIG_USE_OF 899 unsigned long fw_passed_dtb; 900 #endif 901 902 #ifdef CONFIG_DEBUG_FS 903 struct dentry *mips_debugfs_dir; 904 static int __init debugfs_mips(void) 905 { 906 struct dentry *d; 907 908 d = debugfs_create_dir("mips", NULL); 909 if (!d) 910 return -ENOMEM; 911 mips_debugfs_dir = d; 912 return 0; 913 } 914 arch_initcall(debugfs_mips); 915 #endif 916