xref: /openbmc/linux/arch/mips/kernel/setup.c (revision 6dfcd296)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007	 Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 #include <linux/kexec.h>
26 #include <linux/sizes.h>
27 #include <linux/device.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/decompress/generic.h>
30 
31 #include <asm/addrspace.h>
32 #include <asm/bootinfo.h>
33 #include <asm/bugs.h>
34 #include <asm/cache.h>
35 #include <asm/cdmm.h>
36 #include <asm/cpu.h>
37 #include <asm/debug.h>
38 #include <asm/sections.h>
39 #include <asm/setup.h>
40 #include <asm/smp-ops.h>
41 #include <asm/prom.h>
42 
43 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
44 const char __section(.appended_dtb) __appended_dtb[0x100000];
45 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
46 
47 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
48 
49 EXPORT_SYMBOL(cpu_data);
50 
51 #ifdef CONFIG_VT
52 struct screen_info screen_info;
53 #endif
54 
55 /*
56  * Setup information
57  *
58  * These are initialized so they are in the .data section
59  */
60 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
61 
62 EXPORT_SYMBOL(mips_machtype);
63 
64 struct boot_mem_map boot_mem_map;
65 
66 static char __initdata command_line[COMMAND_LINE_SIZE];
67 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
68 
69 #ifdef CONFIG_CMDLINE_BOOL
70 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
71 #endif
72 
73 /*
74  * mips_io_port_base is the begin of the address space to which x86 style
75  * I/O ports are mapped.
76  */
77 const unsigned long mips_io_port_base = -1;
78 EXPORT_SYMBOL(mips_io_port_base);
79 
80 static struct resource code_resource = { .name = "Kernel code", };
81 static struct resource data_resource = { .name = "Kernel data", };
82 
83 static void *detect_magic __initdata = detect_memory_region;
84 
85 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
86 {
87 	int x = boot_mem_map.nr_map;
88 	int i;
89 
90 	/*
91 	 * If the region reaches the top of the physical address space, adjust
92 	 * the size slightly so that (start + size) doesn't overflow
93 	 */
94 	if (start + size - 1 == (phys_addr_t)ULLONG_MAX)
95 		--size;
96 
97 	/* Sanity check */
98 	if (start + size < start) {
99 		pr_warn("Trying to add an invalid memory region, skipped\n");
100 		return;
101 	}
102 
103 	/*
104 	 * Try to merge with existing entry, if any.
105 	 */
106 	for (i = 0; i < boot_mem_map.nr_map; i++) {
107 		struct boot_mem_map_entry *entry = boot_mem_map.map + i;
108 		unsigned long top;
109 
110 		if (entry->type != type)
111 			continue;
112 
113 		if (start + size < entry->addr)
114 			continue;			/* no overlap */
115 
116 		if (entry->addr + entry->size < start)
117 			continue;			/* no overlap */
118 
119 		top = max(entry->addr + entry->size, start + size);
120 		entry->addr = min(entry->addr, start);
121 		entry->size = top - entry->addr;
122 
123 		return;
124 	}
125 
126 	if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
127 		pr_err("Ooops! Too many entries in the memory map!\n");
128 		return;
129 	}
130 
131 	boot_mem_map.map[x].addr = start;
132 	boot_mem_map.map[x].size = size;
133 	boot_mem_map.map[x].type = type;
134 	boot_mem_map.nr_map++;
135 }
136 
137 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
138 {
139 	void *dm = &detect_magic;
140 	phys_addr_t size;
141 
142 	for (size = sz_min; size < sz_max; size <<= 1) {
143 		if (!memcmp(dm, dm + size, sizeof(detect_magic)))
144 			break;
145 	}
146 
147 	pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
148 		((unsigned long long) size) / SZ_1M,
149 		(unsigned long long) start,
150 		((unsigned long long) sz_min) / SZ_1M,
151 		((unsigned long long) sz_max) / SZ_1M);
152 
153 	add_memory_region(start, size, BOOT_MEM_RAM);
154 }
155 
156 static void __init print_memory_map(void)
157 {
158 	int i;
159 	const int field = 2 * sizeof(unsigned long);
160 
161 	for (i = 0; i < boot_mem_map.nr_map; i++) {
162 		printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
163 		       field, (unsigned long long) boot_mem_map.map[i].size,
164 		       field, (unsigned long long) boot_mem_map.map[i].addr);
165 
166 		switch (boot_mem_map.map[i].type) {
167 		case BOOT_MEM_RAM:
168 			printk(KERN_CONT "(usable)\n");
169 			break;
170 		case BOOT_MEM_INIT_RAM:
171 			printk(KERN_CONT "(usable after init)\n");
172 			break;
173 		case BOOT_MEM_ROM_DATA:
174 			printk(KERN_CONT "(ROM data)\n");
175 			break;
176 		case BOOT_MEM_RESERVED:
177 			printk(KERN_CONT "(reserved)\n");
178 			break;
179 		default:
180 			printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
181 			break;
182 		}
183 	}
184 }
185 
186 /*
187  * Manage initrd
188  */
189 #ifdef CONFIG_BLK_DEV_INITRD
190 
191 static int __init rd_start_early(char *p)
192 {
193 	unsigned long start = memparse(p, &p);
194 
195 #ifdef CONFIG_64BIT
196 	/* Guess if the sign extension was forgotten by bootloader */
197 	if (start < XKPHYS)
198 		start = (int)start;
199 #endif
200 	initrd_start = start;
201 	initrd_end += start;
202 	return 0;
203 }
204 early_param("rd_start", rd_start_early);
205 
206 static int __init rd_size_early(char *p)
207 {
208 	initrd_end += memparse(p, &p);
209 	return 0;
210 }
211 early_param("rd_size", rd_size_early);
212 
213 /* it returns the next free pfn after initrd */
214 static unsigned long __init init_initrd(void)
215 {
216 	unsigned long end;
217 
218 	/*
219 	 * Board specific code or command line parser should have
220 	 * already set up initrd_start and initrd_end. In these cases
221 	 * perfom sanity checks and use them if all looks good.
222 	 */
223 	if (!initrd_start || initrd_end <= initrd_start)
224 		goto disable;
225 
226 	if (initrd_start & ~PAGE_MASK) {
227 		pr_err("initrd start must be page aligned\n");
228 		goto disable;
229 	}
230 	if (initrd_start < PAGE_OFFSET) {
231 		pr_err("initrd start < PAGE_OFFSET\n");
232 		goto disable;
233 	}
234 
235 	/*
236 	 * Sanitize initrd addresses. For example firmware
237 	 * can't guess if they need to pass them through
238 	 * 64-bits values if the kernel has been built in pure
239 	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
240 	 * addresses now, so the code can now safely use __pa().
241 	 */
242 	end = __pa(initrd_end);
243 	initrd_end = (unsigned long)__va(end);
244 	initrd_start = (unsigned long)__va(__pa(initrd_start));
245 
246 	ROOT_DEV = Root_RAM0;
247 	return PFN_UP(end);
248 disable:
249 	initrd_start = 0;
250 	initrd_end = 0;
251 	return 0;
252 }
253 
254 /* In some conditions (e.g. big endian bootloader with a little endian
255    kernel), the initrd might appear byte swapped.  Try to detect this and
256    byte swap it if needed.  */
257 static void __init maybe_bswap_initrd(void)
258 {
259 #if defined(CONFIG_CPU_CAVIUM_OCTEON)
260 	u64 buf;
261 
262 	/* Check for CPIO signature */
263 	if (!memcmp((void *)initrd_start, "070701", 6))
264 		return;
265 
266 	/* Check for compressed initrd */
267 	if (decompress_method((unsigned char *)initrd_start, 8, NULL))
268 		return;
269 
270 	/* Try again with a byte swapped header */
271 	buf = swab64p((u64 *)initrd_start);
272 	if (!memcmp(&buf, "070701", 6) ||
273 	    decompress_method((unsigned char *)(&buf), 8, NULL)) {
274 		unsigned long i;
275 
276 		pr_info("Byteswapped initrd detected\n");
277 		for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
278 			swab64s((u64 *)i);
279 	}
280 #endif
281 }
282 
283 static void __init finalize_initrd(void)
284 {
285 	unsigned long size = initrd_end - initrd_start;
286 
287 	if (size == 0) {
288 		printk(KERN_INFO "Initrd not found or empty");
289 		goto disable;
290 	}
291 	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
292 		printk(KERN_ERR "Initrd extends beyond end of memory");
293 		goto disable;
294 	}
295 
296 	maybe_bswap_initrd();
297 
298 	reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
299 	initrd_below_start_ok = 1;
300 
301 	pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
302 		initrd_start, size);
303 	return;
304 disable:
305 	printk(KERN_CONT " - disabling initrd\n");
306 	initrd_start = 0;
307 	initrd_end = 0;
308 }
309 
310 #else  /* !CONFIG_BLK_DEV_INITRD */
311 
312 static unsigned long __init init_initrd(void)
313 {
314 	return 0;
315 }
316 
317 #define finalize_initrd()	do {} while (0)
318 
319 #endif
320 
321 /*
322  * Initialize the bootmem allocator. It also setup initrd related data
323  * if needed.
324  */
325 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
326 
327 static void __init bootmem_init(void)
328 {
329 	init_initrd();
330 	finalize_initrd();
331 }
332 
333 #else  /* !CONFIG_SGI_IP27 */
334 
335 static void __init bootmem_init(void)
336 {
337 	unsigned long reserved_end;
338 	unsigned long mapstart = ~0UL;
339 	unsigned long bootmap_size;
340 	int i;
341 
342 	/*
343 	 * Sanity check any INITRD first. We don't take it into account
344 	 * for bootmem setup initially, rely on the end-of-kernel-code
345 	 * as our memory range starting point. Once bootmem is inited we
346 	 * will reserve the area used for the initrd.
347 	 */
348 	init_initrd();
349 	reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
350 
351 	/*
352 	 * max_low_pfn is not a number of pages. The number of pages
353 	 * of the system is given by 'max_low_pfn - min_low_pfn'.
354 	 */
355 	min_low_pfn = ~0UL;
356 	max_low_pfn = 0;
357 
358 	/*
359 	 * Find the highest page frame number we have available.
360 	 */
361 	for (i = 0; i < boot_mem_map.nr_map; i++) {
362 		unsigned long start, end;
363 
364 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
365 			continue;
366 
367 		start = PFN_UP(boot_mem_map.map[i].addr);
368 		end = PFN_DOWN(boot_mem_map.map[i].addr
369 				+ boot_mem_map.map[i].size);
370 
371 		if (end > max_low_pfn)
372 			max_low_pfn = end;
373 		if (start < min_low_pfn)
374 			min_low_pfn = start;
375 		if (end <= reserved_end)
376 			continue;
377 #ifdef CONFIG_BLK_DEV_INITRD
378 		/* Skip zones before initrd and initrd itself */
379 		if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
380 			continue;
381 #endif
382 		if (start >= mapstart)
383 			continue;
384 		mapstart = max(reserved_end, start);
385 	}
386 
387 	if (min_low_pfn >= max_low_pfn)
388 		panic("Incorrect memory mapping !!!");
389 	if (min_low_pfn > ARCH_PFN_OFFSET) {
390 		pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
391 			(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
392 			min_low_pfn - ARCH_PFN_OFFSET);
393 	} else if (min_low_pfn < ARCH_PFN_OFFSET) {
394 		pr_info("%lu free pages won't be used\n",
395 			ARCH_PFN_OFFSET - min_low_pfn);
396 	}
397 	min_low_pfn = ARCH_PFN_OFFSET;
398 
399 	/*
400 	 * Determine low and high memory ranges
401 	 */
402 	max_pfn = max_low_pfn;
403 	if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
404 #ifdef CONFIG_HIGHMEM
405 		highstart_pfn = PFN_DOWN(HIGHMEM_START);
406 		highend_pfn = max_low_pfn;
407 #endif
408 		max_low_pfn = PFN_DOWN(HIGHMEM_START);
409 	}
410 
411 #ifdef CONFIG_BLK_DEV_INITRD
412 	/*
413 	 * mapstart should be after initrd_end
414 	 */
415 	if (initrd_end)
416 		mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
417 #endif
418 
419 	/*
420 	 * Initialize the boot-time allocator with low memory only.
421 	 */
422 	bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
423 					 min_low_pfn, max_low_pfn);
424 
425 
426 	for (i = 0; i < boot_mem_map.nr_map; i++) {
427 		unsigned long start, end;
428 
429 		start = PFN_UP(boot_mem_map.map[i].addr);
430 		end = PFN_DOWN(boot_mem_map.map[i].addr
431 				+ boot_mem_map.map[i].size);
432 
433 		if (start <= min_low_pfn)
434 			start = min_low_pfn;
435 		if (start >= end)
436 			continue;
437 
438 #ifndef CONFIG_HIGHMEM
439 		if (end > max_low_pfn)
440 			end = max_low_pfn;
441 
442 		/*
443 		 * ... finally, is the area going away?
444 		 */
445 		if (end <= start)
446 			continue;
447 #endif
448 
449 		memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
450 	}
451 
452 	/*
453 	 * Register fully available low RAM pages with the bootmem allocator.
454 	 */
455 	for (i = 0; i < boot_mem_map.nr_map; i++) {
456 		unsigned long start, end, size;
457 
458 		start = PFN_UP(boot_mem_map.map[i].addr);
459 		end   = PFN_DOWN(boot_mem_map.map[i].addr
460 				    + boot_mem_map.map[i].size);
461 
462 		/*
463 		 * Reserve usable memory.
464 		 */
465 		switch (boot_mem_map.map[i].type) {
466 		case BOOT_MEM_RAM:
467 			break;
468 		case BOOT_MEM_INIT_RAM:
469 			memory_present(0, start, end);
470 			continue;
471 		default:
472 			/* Not usable memory */
473 			continue;
474 		}
475 
476 		/*
477 		 * We are rounding up the start address of usable memory
478 		 * and at the end of the usable range downwards.
479 		 */
480 		if (start >= max_low_pfn)
481 			continue;
482 		if (start < reserved_end)
483 			start = reserved_end;
484 		if (end > max_low_pfn)
485 			end = max_low_pfn;
486 
487 		/*
488 		 * ... finally, is the area going away?
489 		 */
490 		if (end <= start)
491 			continue;
492 		size = end - start;
493 
494 		/* Register lowmem ranges */
495 		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
496 		memory_present(0, start, end);
497 	}
498 
499 	/*
500 	 * Reserve the bootmap memory.
501 	 */
502 	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
503 
504 #ifdef CONFIG_RELOCATABLE
505 	/*
506 	 * The kernel reserves all memory below its _end symbol as bootmem,
507 	 * but the kernel may now be at a much higher address. The memory
508 	 * between the original and new locations may be returned to the system.
509 	 */
510 	if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
511 		unsigned long offset;
512 		extern void show_kernel_relocation(const char *level);
513 
514 		offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
515 		free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);
516 
517 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
518 		/*
519 		 * This information is necessary when debugging the kernel
520 		 * But is a security vulnerability otherwise!
521 		 */
522 		show_kernel_relocation(KERN_INFO);
523 #endif
524 	}
525 #endif
526 
527 	/*
528 	 * Reserve initrd memory if needed.
529 	 */
530 	finalize_initrd();
531 }
532 
533 #endif	/* CONFIG_SGI_IP27 */
534 
535 /*
536  * arch_mem_init - initialize memory management subsystem
537  *
538  *  o plat_mem_setup() detects the memory configuration and will record detected
539  *    memory areas using add_memory_region.
540  *
541  * At this stage the memory configuration of the system is known to the
542  * kernel but generic memory management system is still entirely uninitialized.
543  *
544  *  o bootmem_init()
545  *  o sparse_init()
546  *  o paging_init()
547  *  o dma_contiguous_reserve()
548  *
549  * At this stage the bootmem allocator is ready to use.
550  *
551  * NOTE: historically plat_mem_setup did the entire platform initialization.
552  *	 This was rather impractical because it meant plat_mem_setup had to
553  * get away without any kind of memory allocator.  To keep old code from
554  * breaking plat_setup was just renamed to plat_mem_setup and a second platform
555  * initialization hook for anything else was introduced.
556  */
557 
558 static int usermem __initdata;
559 
560 static int __init early_parse_mem(char *p)
561 {
562 	phys_addr_t start, size;
563 
564 	/*
565 	 * If a user specifies memory size, we
566 	 * blow away any automatically generated
567 	 * size.
568 	 */
569 	if (usermem == 0) {
570 		boot_mem_map.nr_map = 0;
571 		usermem = 1;
572 	}
573 	start = 0;
574 	size = memparse(p, &p);
575 	if (*p == '@')
576 		start = memparse(p + 1, &p);
577 
578 	add_memory_region(start, size, BOOT_MEM_RAM);
579 	return 0;
580 }
581 early_param("mem", early_parse_mem);
582 
583 #ifdef CONFIG_PROC_VMCORE
584 unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
585 static int __init early_parse_elfcorehdr(char *p)
586 {
587 	int i;
588 
589 	setup_elfcorehdr = memparse(p, &p);
590 
591 	for (i = 0; i < boot_mem_map.nr_map; i++) {
592 		unsigned long start = boot_mem_map.map[i].addr;
593 		unsigned long end = (boot_mem_map.map[i].addr +
594 				     boot_mem_map.map[i].size);
595 		if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
596 			/*
597 			 * Reserve from the elf core header to the end of
598 			 * the memory segment, that should all be kdump
599 			 * reserved memory.
600 			 */
601 			setup_elfcorehdr_size = end - setup_elfcorehdr;
602 			break;
603 		}
604 	}
605 	/*
606 	 * If we don't find it in the memory map, then we shouldn't
607 	 * have to worry about it, as the new kernel won't use it.
608 	 */
609 	return 0;
610 }
611 early_param("elfcorehdr", early_parse_elfcorehdr);
612 #endif
613 
614 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
615 {
616 	phys_addr_t size;
617 	int i;
618 
619 	size = end - mem;
620 	if (!size)
621 		return;
622 
623 	/* Make sure it is in the boot_mem_map */
624 	for (i = 0; i < boot_mem_map.nr_map; i++) {
625 		if (mem >= boot_mem_map.map[i].addr &&
626 		    mem < (boot_mem_map.map[i].addr +
627 			   boot_mem_map.map[i].size))
628 			return;
629 	}
630 	add_memory_region(mem, size, type);
631 }
632 
633 #ifdef CONFIG_KEXEC
634 static inline unsigned long long get_total_mem(void)
635 {
636 	unsigned long long total;
637 
638 	total = max_pfn - min_low_pfn;
639 	return total << PAGE_SHIFT;
640 }
641 
642 static void __init mips_parse_crashkernel(void)
643 {
644 	unsigned long long total_mem;
645 	unsigned long long crash_size, crash_base;
646 	int ret;
647 
648 	total_mem = get_total_mem();
649 	ret = parse_crashkernel(boot_command_line, total_mem,
650 				&crash_size, &crash_base);
651 	if (ret != 0 || crash_size <= 0)
652 		return;
653 
654 	crashk_res.start = crash_base;
655 	crashk_res.end	 = crash_base + crash_size - 1;
656 }
657 
658 static void __init request_crashkernel(struct resource *res)
659 {
660 	int ret;
661 
662 	ret = request_resource(res, &crashk_res);
663 	if (!ret)
664 		pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
665 			(unsigned long)((crashk_res.end -
666 					 crashk_res.start + 1) >> 20),
667 			(unsigned long)(crashk_res.start  >> 20));
668 }
669 #else /* !defined(CONFIG_KEXEC)		*/
670 static void __init mips_parse_crashkernel(void)
671 {
672 }
673 
674 static void __init request_crashkernel(struct resource *res)
675 {
676 }
677 #endif /* !defined(CONFIG_KEXEC)  */
678 
679 #define USE_PROM_CMDLINE	IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
680 #define USE_DTB_CMDLINE		IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
681 #define EXTEND_WITH_PROM	IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
682 #define BUILTIN_EXTEND_WITH_PROM	\
683 	IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)
684 
685 static void __init arch_mem_init(char **cmdline_p)
686 {
687 	struct memblock_region *reg;
688 	extern void plat_mem_setup(void);
689 
690 	/* call board setup routine */
691 	plat_mem_setup();
692 
693 	/*
694 	 * Make sure all kernel memory is in the maps.  The "UP" and
695 	 * "DOWN" are opposite for initdata since if it crosses over
696 	 * into another memory section you don't want that to be
697 	 * freed when the initdata is freed.
698 	 */
699 	arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
700 			 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
701 			 BOOT_MEM_RAM);
702 	arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
703 			 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
704 			 BOOT_MEM_INIT_RAM);
705 
706 	pr_info("Determined physical RAM map:\n");
707 	print_memory_map();
708 
709 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
710 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
711 #else
712 	if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
713 	    (USE_DTB_CMDLINE && !boot_command_line[0]))
714 		strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
715 
716 	if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
717 		if (boot_command_line[0])
718 			strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
719 		strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
720 	}
721 
722 #if defined(CONFIG_CMDLINE_BOOL)
723 	if (builtin_cmdline[0]) {
724 		if (boot_command_line[0])
725 			strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
726 		strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
727 	}
728 
729 	if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
730 		if (boot_command_line[0])
731 			strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
732 		strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
733 	}
734 #endif
735 #endif
736 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
737 
738 	*cmdline_p = command_line;
739 
740 	parse_early_param();
741 
742 	if (usermem) {
743 		pr_info("User-defined physical RAM map:\n");
744 		print_memory_map();
745 	}
746 
747 	bootmem_init();
748 #ifdef CONFIG_PROC_VMCORE
749 	if (setup_elfcorehdr && setup_elfcorehdr_size) {
750 		printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
751 		       setup_elfcorehdr, setup_elfcorehdr_size);
752 		reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
753 				BOOTMEM_DEFAULT);
754 	}
755 #endif
756 
757 	mips_parse_crashkernel();
758 #ifdef CONFIG_KEXEC
759 	if (crashk_res.start != crashk_res.end)
760 		reserve_bootmem(crashk_res.start,
761 				crashk_res.end - crashk_res.start + 1,
762 				BOOTMEM_DEFAULT);
763 #endif
764 	device_tree_init();
765 	sparse_init();
766 	plat_swiotlb_setup();
767 
768 	dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
769 	/* Tell bootmem about cma reserved memblock section */
770 	for_each_memblock(reserved, reg)
771 		if (reg->size != 0)
772 			reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
773 
774 	reserve_bootmem_region(__pa_symbol(&__nosave_begin),
775 			__pa_symbol(&__nosave_end)); /* Reserve for hibernation */
776 }
777 
778 static void __init resource_init(void)
779 {
780 	int i;
781 
782 	if (UNCAC_BASE != IO_BASE)
783 		return;
784 
785 	code_resource.start = __pa_symbol(&_text);
786 	code_resource.end = __pa_symbol(&_etext) - 1;
787 	data_resource.start = __pa_symbol(&_etext);
788 	data_resource.end = __pa_symbol(&_edata) - 1;
789 
790 	for (i = 0; i < boot_mem_map.nr_map; i++) {
791 		struct resource *res;
792 		unsigned long start, end;
793 
794 		start = boot_mem_map.map[i].addr;
795 		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
796 		if (start >= HIGHMEM_START)
797 			continue;
798 		if (end >= HIGHMEM_START)
799 			end = HIGHMEM_START - 1;
800 
801 		res = alloc_bootmem(sizeof(struct resource));
802 
803 		res->start = start;
804 		res->end = end;
805 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
806 
807 		switch (boot_mem_map.map[i].type) {
808 		case BOOT_MEM_RAM:
809 		case BOOT_MEM_INIT_RAM:
810 		case BOOT_MEM_ROM_DATA:
811 			res->name = "System RAM";
812 			res->flags |= IORESOURCE_SYSRAM;
813 			break;
814 		case BOOT_MEM_RESERVED:
815 		default:
816 			res->name = "reserved";
817 		}
818 
819 		request_resource(&iomem_resource, res);
820 
821 		/*
822 		 *  We don't know which RAM region contains kernel data,
823 		 *  so we try it repeatedly and let the resource manager
824 		 *  test it.
825 		 */
826 		request_resource(res, &code_resource);
827 		request_resource(res, &data_resource);
828 		request_crashkernel(res);
829 	}
830 }
831 
832 #ifdef CONFIG_SMP
833 static void __init prefill_possible_map(void)
834 {
835 	int i, possible = num_possible_cpus();
836 
837 	if (possible > nr_cpu_ids)
838 		possible = nr_cpu_ids;
839 
840 	for (i = 0; i < possible; i++)
841 		set_cpu_possible(i, true);
842 	for (; i < NR_CPUS; i++)
843 		set_cpu_possible(i, false);
844 
845 	nr_cpu_ids = possible;
846 }
847 #else
848 static inline void prefill_possible_map(void) {}
849 #endif
850 
851 void __init setup_arch(char **cmdline_p)
852 {
853 	cpu_probe();
854 	mips_cm_probe();
855 	prom_init();
856 
857 	setup_early_fdc_console();
858 #ifdef CONFIG_EARLY_PRINTK
859 	setup_early_printk();
860 #endif
861 	cpu_report();
862 	check_bugs_early();
863 
864 #if defined(CONFIG_VT)
865 #if defined(CONFIG_VGA_CONSOLE)
866 	conswitchp = &vga_con;
867 #elif defined(CONFIG_DUMMY_CONSOLE)
868 	conswitchp = &dummy_con;
869 #endif
870 #endif
871 
872 	arch_mem_init(cmdline_p);
873 
874 	resource_init();
875 	plat_smp_setup();
876 	prefill_possible_map();
877 
878 	cpu_cache_init();
879 	paging_init();
880 }
881 
882 unsigned long kernelsp[NR_CPUS];
883 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
884 
885 #ifdef CONFIG_USE_OF
886 unsigned long fw_passed_dtb;
887 #endif
888 
889 #ifdef CONFIG_DEBUG_FS
890 struct dentry *mips_debugfs_dir;
891 static int __init debugfs_mips(void)
892 {
893 	struct dentry *d;
894 
895 	d = debugfs_create_dir("mips", NULL);
896 	if (!d)
897 		return -ENOMEM;
898 	mips_debugfs_dir = d;
899 	return 0;
900 }
901 arch_initcall(debugfs_mips);
902 #endif
903