xref: /openbmc/linux/arch/mips/kernel/setup.c (revision 64c70b1c)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000 2001, 2002  Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/module.h>
16 #include <linux/screen_info.h>
17 #include <linux/bootmem.h>
18 #include <linux/initrd.h>
19 #include <linux/root_dev.h>
20 #include <linux/highmem.h>
21 #include <linux/console.h>
22 #include <linux/pfn.h>
23 #include <linux/debugfs.h>
24 
25 #include <asm/addrspace.h>
26 #include <asm/bootinfo.h>
27 #include <asm/cache.h>
28 #include <asm/cpu.h>
29 #include <asm/sections.h>
30 #include <asm/setup.h>
31 #include <asm/system.h>
32 
33 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
34 
35 EXPORT_SYMBOL(cpu_data);
36 
37 #ifdef CONFIG_VT
38 struct screen_info screen_info;
39 #endif
40 
41 /*
42  * Despite it's name this variable is even if we don't have PCI
43  */
44 unsigned int PCI_DMA_BUS_IS_PHYS;
45 
46 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
47 
48 /*
49  * Setup information
50  *
51  * These are initialized so they are in the .data section
52  */
53 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
54 unsigned long mips_machgroup __read_mostly = MACH_GROUP_UNKNOWN;
55 
56 EXPORT_SYMBOL(mips_machtype);
57 EXPORT_SYMBOL(mips_machgroup);
58 
59 struct boot_mem_map boot_mem_map;
60 
61 static char command_line[CL_SIZE];
62        char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE;
63 
64 /*
65  * mips_io_port_base is the begin of the address space to which x86 style
66  * I/O ports are mapped.
67  */
68 const unsigned long mips_io_port_base __read_mostly = -1;
69 EXPORT_SYMBOL(mips_io_port_base);
70 
71 /*
72  * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
73  * for the processor.
74  */
75 unsigned long isa_slot_offset;
76 EXPORT_SYMBOL(isa_slot_offset);
77 
78 static struct resource code_resource = { .name = "Kernel code", };
79 static struct resource data_resource = { .name = "Kernel data", };
80 
81 void __init add_memory_region(phys_t start, phys_t size, long type)
82 {
83 	int x = boot_mem_map.nr_map;
84 	struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
85 
86 	/* Sanity check */
87 	if (start + size < start) {
88 		printk("Trying to add an invalid memory region, skipped\n");
89 		return;
90 	}
91 
92 	/*
93 	 * Try to merge with previous entry if any.  This is far less than
94 	 * perfect but is sufficient for most real world cases.
95 	 */
96 	if (x && prev->addr + prev->size == start && prev->type == type) {
97 		prev->size += size;
98 		return;
99 	}
100 
101 	if (x == BOOT_MEM_MAP_MAX) {
102 		printk("Ooops! Too many entries in the memory map!\n");
103 		return;
104 	}
105 
106 	boot_mem_map.map[x].addr = start;
107 	boot_mem_map.map[x].size = size;
108 	boot_mem_map.map[x].type = type;
109 	boot_mem_map.nr_map++;
110 }
111 
112 static void __init print_memory_map(void)
113 {
114 	int i;
115 	const int field = 2 * sizeof(unsigned long);
116 
117 	for (i = 0; i < boot_mem_map.nr_map; i++) {
118 		printk(" memory: %0*Lx @ %0*Lx ",
119 		       field, (unsigned long long) boot_mem_map.map[i].size,
120 		       field, (unsigned long long) boot_mem_map.map[i].addr);
121 
122 		switch (boot_mem_map.map[i].type) {
123 		case BOOT_MEM_RAM:
124 			printk("(usable)\n");
125 			break;
126 		case BOOT_MEM_ROM_DATA:
127 			printk("(ROM data)\n");
128 			break;
129 		case BOOT_MEM_RESERVED:
130 			printk("(reserved)\n");
131 			break;
132 		default:
133 			printk("type %lu\n", boot_mem_map.map[i].type);
134 			break;
135 		}
136 	}
137 }
138 
139 /*
140  * Manage initrd
141  */
142 #ifdef CONFIG_BLK_DEV_INITRD
143 
144 static int __init rd_start_early(char *p)
145 {
146 	unsigned long start = memparse(p, &p);
147 
148 #ifdef CONFIG_64BIT
149 	/* Guess if the sign extension was forgotten by bootloader */
150 	if (start < XKPHYS)
151 		start = (int)start;
152 #endif
153 	initrd_start = start;
154 	initrd_end += start;
155 	return 0;
156 }
157 early_param("rd_start", rd_start_early);
158 
159 static int __init rd_size_early(char *p)
160 {
161 	initrd_end += memparse(p, &p);
162 	return 0;
163 }
164 early_param("rd_size", rd_size_early);
165 
166 /* it returns the next free pfn after initrd */
167 static unsigned long __init init_initrd(void)
168 {
169 	unsigned long end;
170 	u32 *initrd_header;
171 
172 	/*
173 	 * Board specific code or command line parser should have
174 	 * already set up initrd_start and initrd_end. In these cases
175 	 * perfom sanity checks and use them if all looks good.
176 	 */
177 	if (initrd_start && initrd_end > initrd_start)
178 		goto sanitize;
179 
180 	/*
181 	 * See if initrd has been added to the kernel image by
182 	 * arch/mips/boot/addinitrd.c. In that case a header is
183 	 * prepended to initrd and is made up by 8 bytes. The fisrt
184 	 * word is a magic number and the second one is the size of
185 	 * initrd.  Initrd start must be page aligned in any cases.
186 	 */
187 	initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8;
188 	if (initrd_header[0] != 0x494E5244)
189 		goto disable;
190 	initrd_start = (unsigned long)(initrd_header + 2);
191 	initrd_end = initrd_start + initrd_header[1];
192 
193 sanitize:
194 	if (initrd_start & ~PAGE_MASK) {
195 		printk(KERN_ERR "initrd start must be page aligned\n");
196 		goto disable;
197 	}
198 	if (initrd_start < PAGE_OFFSET) {
199 		printk(KERN_ERR "initrd start < PAGE_OFFSET\n");
200 		goto disable;
201 	}
202 
203 	/*
204 	 * Sanitize initrd addresses. For example firmware
205 	 * can't guess if they need to pass them through
206 	 * 64-bits values if the kernel has been built in pure
207 	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
208 	 * addresses now, so the code can now safely use __pa().
209 	 */
210 	end = __pa(initrd_end);
211 	initrd_end = (unsigned long)__va(end);
212 	initrd_start = (unsigned long)__va(__pa(initrd_start));
213 
214 	ROOT_DEV = Root_RAM0;
215 	return PFN_UP(end);
216 disable:
217 	initrd_start = 0;
218 	initrd_end = 0;
219 	return 0;
220 }
221 
222 static void __init finalize_initrd(void)
223 {
224 	unsigned long size = initrd_end - initrd_start;
225 
226 	if (size == 0) {
227 		printk(KERN_INFO "Initrd not found or empty");
228 		goto disable;
229 	}
230 	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
231 		printk("Initrd extends beyond end of memory");
232 		goto disable;
233 	}
234 
235 	reserve_bootmem(__pa(initrd_start), size);
236 	initrd_below_start_ok = 1;
237 
238 	printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
239 	       initrd_start, size);
240 	return;
241 disable:
242 	printk(" - disabling initrd\n");
243 	initrd_start = 0;
244 	initrd_end = 0;
245 }
246 
247 #else  /* !CONFIG_BLK_DEV_INITRD */
248 
249 static unsigned long __init init_initrd(void)
250 {
251 	return 0;
252 }
253 
254 #define finalize_initrd()	do {} while (0)
255 
256 #endif
257 
258 /*
259  * Initialize the bootmem allocator. It also setup initrd related data
260  * if needed.
261  */
262 #ifdef CONFIG_SGI_IP27
263 
264 static void __init bootmem_init(void)
265 {
266 	init_initrd();
267 	finalize_initrd();
268 }
269 
270 #else  /* !CONFIG_SGI_IP27 */
271 
272 static void __init bootmem_init(void)
273 {
274 	unsigned long reserved_end;
275 	unsigned long mapstart = ~0UL;
276 	unsigned long bootmap_size;
277 	int i;
278 
279 	/*
280 	 * Init any data related to initrd. It's a nop if INITRD is
281 	 * not selected. Once that done we can determine the low bound
282 	 * of usable memory.
283 	 */
284 	reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end)));
285 
286 	/*
287 	 * max_low_pfn is not a number of pages. The number of pages
288 	 * of the system is given by 'max_low_pfn - min_low_pfn'.
289 	 */
290 	min_low_pfn = ~0UL;
291 	max_low_pfn = 0;
292 
293 	/*
294 	 * Find the highest page frame number we have available.
295 	 */
296 	for (i = 0; i < boot_mem_map.nr_map; i++) {
297 		unsigned long start, end;
298 
299 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
300 			continue;
301 
302 		start = PFN_UP(boot_mem_map.map[i].addr);
303 		end = PFN_DOWN(boot_mem_map.map[i].addr
304 				+ boot_mem_map.map[i].size);
305 
306 		if (end > max_low_pfn)
307 			max_low_pfn = end;
308 		if (start < min_low_pfn)
309 			min_low_pfn = start;
310 		if (end <= reserved_end)
311 			continue;
312 		if (start >= mapstart)
313 			continue;
314 		mapstart = max(reserved_end, start);
315 	}
316 
317 	if (min_low_pfn >= max_low_pfn)
318 		panic("Incorrect memory mapping !!!");
319 	if (min_low_pfn > ARCH_PFN_OFFSET) {
320 		printk(KERN_INFO
321 		       "Wasting %lu bytes for tracking %lu unused pages\n",
322 		       (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
323 		       min_low_pfn - ARCH_PFN_OFFSET);
324 	} else if (min_low_pfn < ARCH_PFN_OFFSET) {
325 		printk(KERN_INFO
326 		       "%lu free pages won't be used\n",
327 		       ARCH_PFN_OFFSET - min_low_pfn);
328 	}
329 	min_low_pfn = ARCH_PFN_OFFSET;
330 
331 	/*
332 	 * Determine low and high memory ranges
333 	 */
334 	if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
335 #ifdef CONFIG_HIGHMEM
336 		highstart_pfn = PFN_DOWN(HIGHMEM_START);
337 		highend_pfn = max_low_pfn;
338 #endif
339 		max_low_pfn = PFN_DOWN(HIGHMEM_START);
340 	}
341 
342 	/*
343 	 * Initialize the boot-time allocator with low memory only.
344 	 */
345 	bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
346 					 min_low_pfn, max_low_pfn);
347 	/*
348 	 * Register fully available low RAM pages with the bootmem allocator.
349 	 */
350 	for (i = 0; i < boot_mem_map.nr_map; i++) {
351 		unsigned long start, end, size;
352 
353 		/*
354 		 * Reserve usable memory.
355 		 */
356 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
357 			continue;
358 
359 		start = PFN_UP(boot_mem_map.map[i].addr);
360 		end   = PFN_DOWN(boot_mem_map.map[i].addr
361 				    + boot_mem_map.map[i].size);
362 		/*
363 		 * We are rounding up the start address of usable memory
364 		 * and at the end of the usable range downwards.
365 		 */
366 		if (start >= max_low_pfn)
367 			continue;
368 		if (start < reserved_end)
369 			start = reserved_end;
370 		if (end > max_low_pfn)
371 			end = max_low_pfn;
372 
373 		/*
374 		 * ... finally, is the area going away?
375 		 */
376 		if (end <= start)
377 			continue;
378 		size = end - start;
379 
380 		/* Register lowmem ranges */
381 		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
382 		memory_present(0, start, end);
383 	}
384 
385 	/*
386 	 * Reserve the bootmap memory.
387 	 */
388 	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size);
389 
390 	/*
391 	 * Reserve initrd memory if needed.
392 	 */
393 	finalize_initrd();
394 }
395 
396 #endif	/* CONFIG_SGI_IP27 */
397 
398 /*
399  * arch_mem_init - initialize memory managment subsystem
400  *
401  *  o plat_mem_setup() detects the memory configuration and will record detected
402  *    memory areas using add_memory_region.
403  *
404  * At this stage the memory configuration of the system is known to the
405  * kernel but generic memory managment system is still entirely uninitialized.
406  *
407  *  o bootmem_init()
408  *  o sparse_init()
409  *  o paging_init()
410  *
411  * At this stage the bootmem allocator is ready to use.
412  *
413  * NOTE: historically plat_mem_setup did the entire platform initialization.
414  *       This was rather impractical because it meant plat_mem_setup had to
415  * get away without any kind of memory allocator.  To keep old code from
416  * breaking plat_setup was just renamed to plat_setup and a second platform
417  * initialization hook for anything else was introduced.
418  */
419 
420 static int usermem __initdata = 0;
421 
422 static int __init early_parse_mem(char *p)
423 {
424 	unsigned long start, size;
425 
426 	/*
427 	 * If a user specifies memory size, we
428 	 * blow away any automatically generated
429 	 * size.
430 	 */
431 	if (usermem == 0) {
432 		boot_mem_map.nr_map = 0;
433 		usermem = 1;
434  	}
435 	start = 0;
436 	size = memparse(p, &p);
437 	if (*p == '@')
438 		start = memparse(p + 1, &p);
439 
440 	add_memory_region(start, size, BOOT_MEM_RAM);
441 	return 0;
442 }
443 early_param("mem", early_parse_mem);
444 
445 static void __init arch_mem_init(char **cmdline_p)
446 {
447 	extern void plat_mem_setup(void);
448 
449 	/* call board setup routine */
450 	plat_mem_setup();
451 
452 	printk("Determined physical RAM map:\n");
453 	print_memory_map();
454 
455 	strlcpy(command_line, arcs_cmdline, sizeof(command_line));
456 	strlcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
457 
458 	*cmdline_p = command_line;
459 
460 	parse_early_param();
461 
462 	if (usermem) {
463 		printk("User-defined physical RAM map:\n");
464 		print_memory_map();
465 	}
466 
467 	bootmem_init();
468 	sparse_init();
469 	paging_init();
470 }
471 
472 static void __init resource_init(void)
473 {
474 	int i;
475 
476 	if (UNCAC_BASE != IO_BASE)
477 		return;
478 
479 	code_resource.start = __pa_symbol(&_text);
480 	code_resource.end = __pa_symbol(&_etext) - 1;
481 	data_resource.start = __pa_symbol(&_etext);
482 	data_resource.end = __pa_symbol(&_edata) - 1;
483 
484 	/*
485 	 * Request address space for all standard RAM.
486 	 */
487 	for (i = 0; i < boot_mem_map.nr_map; i++) {
488 		struct resource *res;
489 		unsigned long start, end;
490 
491 		start = boot_mem_map.map[i].addr;
492 		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
493 		if (start >= HIGHMEM_START)
494 			continue;
495 		if (end >= HIGHMEM_START)
496 			end = HIGHMEM_START - 1;
497 
498 		res = alloc_bootmem(sizeof(struct resource));
499 		switch (boot_mem_map.map[i].type) {
500 		case BOOT_MEM_RAM:
501 		case BOOT_MEM_ROM_DATA:
502 			res->name = "System RAM";
503 			break;
504 		case BOOT_MEM_RESERVED:
505 		default:
506 			res->name = "reserved";
507 		}
508 
509 		res->start = start;
510 		res->end = end;
511 
512 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
513 		request_resource(&iomem_resource, res);
514 
515 		/*
516 		 *  We don't know which RAM region contains kernel data,
517 		 *  so we try it repeatedly and let the resource manager
518 		 *  test it.
519 		 */
520 		request_resource(res, &code_resource);
521 		request_resource(res, &data_resource);
522 	}
523 }
524 
525 void __init setup_arch(char **cmdline_p)
526 {
527 	cpu_probe();
528 	prom_init();
529 
530 #ifdef CONFIG_EARLY_PRINTK
531 	{
532 		extern void setup_early_printk(void);
533 
534 		setup_early_printk();
535 	}
536 #endif
537 	cpu_report();
538 
539 #if defined(CONFIG_VT)
540 #if defined(CONFIG_VGA_CONSOLE)
541 	conswitchp = &vga_con;
542 #elif defined(CONFIG_DUMMY_CONSOLE)
543 	conswitchp = &dummy_con;
544 #endif
545 #endif
546 
547 	arch_mem_init(cmdline_p);
548 
549 	resource_init();
550 #ifdef CONFIG_SMP
551 	plat_smp_setup();
552 #endif
553 }
554 
555 static int __init fpu_disable(char *s)
556 {
557 	int i;
558 
559 	for (i = 0; i < NR_CPUS; i++)
560 		cpu_data[i].options &= ~MIPS_CPU_FPU;
561 
562 	return 1;
563 }
564 
565 __setup("nofpu", fpu_disable);
566 
567 static int __init dsp_disable(char *s)
568 {
569 	cpu_data[0].ases &= ~MIPS_ASE_DSP;
570 
571 	return 1;
572 }
573 
574 __setup("nodsp", dsp_disable);
575 
576 unsigned long kernelsp[NR_CPUS];
577 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
578 
579 #ifdef CONFIG_DEBUG_FS
580 struct dentry *mips_debugfs_dir;
581 static int __init debugfs_mips(void)
582 {
583 	struct dentry *d;
584 
585 	d = debugfs_create_dir("mips", NULL);
586 	if (IS_ERR(d))
587 		return PTR_ERR(d);
588 	mips_debugfs_dir = d;
589 	return 0;
590 }
591 arch_initcall(debugfs_mips);
592 #endif
593