1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1995 Linus Torvalds 7 * Copyright (C) 1995 Waldorf Electronics 8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle 9 * Copyright (C) 1996 Stoned Elipot 10 * Copyright (C) 1999 Silicon Graphics, Inc. 11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki 12 */ 13 #include <linux/init.h> 14 #include <linux/ioport.h> 15 #include <linux/module.h> 16 #include <linux/screen_info.h> 17 #include <linux/bootmem.h> 18 #include <linux/initrd.h> 19 #include <linux/root_dev.h> 20 #include <linux/highmem.h> 21 #include <linux/console.h> 22 #include <linux/pfn.h> 23 #include <linux/debugfs.h> 24 25 #include <asm/addrspace.h> 26 #include <asm/bootinfo.h> 27 #include <asm/bugs.h> 28 #include <asm/cache.h> 29 #include <asm/cpu.h> 30 #include <asm/sections.h> 31 #include <asm/setup.h> 32 #include <asm/smp-ops.h> 33 #include <asm/system.h> 34 #include <asm/prom.h> 35 36 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; 37 38 EXPORT_SYMBOL(cpu_data); 39 40 #ifdef CONFIG_VT 41 struct screen_info screen_info; 42 #endif 43 44 /* 45 * Despite it's name this variable is even if we don't have PCI 46 */ 47 unsigned int PCI_DMA_BUS_IS_PHYS; 48 49 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS); 50 51 /* 52 * Setup information 53 * 54 * These are initialized so they are in the .data section 55 */ 56 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; 57 58 EXPORT_SYMBOL(mips_machtype); 59 60 struct boot_mem_map boot_mem_map; 61 62 static char __initdata command_line[COMMAND_LINE_SIZE]; 63 char __initdata arcs_cmdline[COMMAND_LINE_SIZE]; 64 65 #ifdef CONFIG_CMDLINE_BOOL 66 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 67 #endif 68 69 /* 70 * mips_io_port_base is the begin of the address space to which x86 style 71 * I/O ports are mapped. 72 */ 73 const unsigned long mips_io_port_base = -1; 74 EXPORT_SYMBOL(mips_io_port_base); 75 76 static struct resource code_resource = { .name = "Kernel code", }; 77 static struct resource data_resource = { .name = "Kernel data", }; 78 79 void __init add_memory_region(phys_t start, phys_t size, long type) 80 { 81 int x = boot_mem_map.nr_map; 82 struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1; 83 84 /* Sanity check */ 85 if (start + size < start) { 86 pr_warning("Trying to add an invalid memory region, skipped\n"); 87 return; 88 } 89 90 /* 91 * Try to merge with previous entry if any. This is far less than 92 * perfect but is sufficient for most real world cases. 93 */ 94 if (x && prev->addr + prev->size == start && prev->type == type) { 95 prev->size += size; 96 return; 97 } 98 99 if (x == BOOT_MEM_MAP_MAX) { 100 pr_err("Ooops! Too many entries in the memory map!\n"); 101 return; 102 } 103 104 boot_mem_map.map[x].addr = start; 105 boot_mem_map.map[x].size = size; 106 boot_mem_map.map[x].type = type; 107 boot_mem_map.nr_map++; 108 } 109 110 static void __init print_memory_map(void) 111 { 112 int i; 113 const int field = 2 * sizeof(unsigned long); 114 115 for (i = 0; i < boot_mem_map.nr_map; i++) { 116 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ", 117 field, (unsigned long long) boot_mem_map.map[i].size, 118 field, (unsigned long long) boot_mem_map.map[i].addr); 119 120 switch (boot_mem_map.map[i].type) { 121 case BOOT_MEM_RAM: 122 printk(KERN_CONT "(usable)\n"); 123 break; 124 case BOOT_MEM_ROM_DATA: 125 printk(KERN_CONT "(ROM data)\n"); 126 break; 127 case BOOT_MEM_RESERVED: 128 printk(KERN_CONT "(reserved)\n"); 129 break; 130 default: 131 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type); 132 break; 133 } 134 } 135 } 136 137 /* 138 * Manage initrd 139 */ 140 #ifdef CONFIG_BLK_DEV_INITRD 141 142 static int __init rd_start_early(char *p) 143 { 144 unsigned long start = memparse(p, &p); 145 146 #ifdef CONFIG_64BIT 147 /* Guess if the sign extension was forgotten by bootloader */ 148 if (start < XKPHYS) 149 start = (int)start; 150 #endif 151 initrd_start = start; 152 initrd_end += start; 153 return 0; 154 } 155 early_param("rd_start", rd_start_early); 156 157 static int __init rd_size_early(char *p) 158 { 159 initrd_end += memparse(p, &p); 160 return 0; 161 } 162 early_param("rd_size", rd_size_early); 163 164 /* it returns the next free pfn after initrd */ 165 static unsigned long __init init_initrd(void) 166 { 167 unsigned long end; 168 169 /* 170 * Board specific code or command line parser should have 171 * already set up initrd_start and initrd_end. In these cases 172 * perfom sanity checks and use them if all looks good. 173 */ 174 if (!initrd_start || initrd_end <= initrd_start) 175 goto disable; 176 177 if (initrd_start & ~PAGE_MASK) { 178 pr_err("initrd start must be page aligned\n"); 179 goto disable; 180 } 181 if (initrd_start < PAGE_OFFSET) { 182 pr_err("initrd start < PAGE_OFFSET\n"); 183 goto disable; 184 } 185 186 /* 187 * Sanitize initrd addresses. For example firmware 188 * can't guess if they need to pass them through 189 * 64-bits values if the kernel has been built in pure 190 * 32-bit. We need also to switch from KSEG0 to XKPHYS 191 * addresses now, so the code can now safely use __pa(). 192 */ 193 end = __pa(initrd_end); 194 initrd_end = (unsigned long)__va(end); 195 initrd_start = (unsigned long)__va(__pa(initrd_start)); 196 197 ROOT_DEV = Root_RAM0; 198 return PFN_UP(end); 199 disable: 200 initrd_start = 0; 201 initrd_end = 0; 202 return 0; 203 } 204 205 static void __init finalize_initrd(void) 206 { 207 unsigned long size = initrd_end - initrd_start; 208 209 if (size == 0) { 210 printk(KERN_INFO "Initrd not found or empty"); 211 goto disable; 212 } 213 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { 214 printk(KERN_ERR "Initrd extends beyond end of memory"); 215 goto disable; 216 } 217 218 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT); 219 initrd_below_start_ok = 1; 220 221 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", 222 initrd_start, size); 223 return; 224 disable: 225 printk(KERN_CONT " - disabling initrd\n"); 226 initrd_start = 0; 227 initrd_end = 0; 228 } 229 230 #else /* !CONFIG_BLK_DEV_INITRD */ 231 232 static unsigned long __init init_initrd(void) 233 { 234 return 0; 235 } 236 237 #define finalize_initrd() do {} while (0) 238 239 #endif 240 241 /* 242 * Initialize the bootmem allocator. It also setup initrd related data 243 * if needed. 244 */ 245 #ifdef CONFIG_SGI_IP27 246 247 static void __init bootmem_init(void) 248 { 249 init_initrd(); 250 finalize_initrd(); 251 } 252 253 #else /* !CONFIG_SGI_IP27 */ 254 255 static void __init bootmem_init(void) 256 { 257 unsigned long reserved_end; 258 unsigned long mapstart = ~0UL; 259 unsigned long bootmap_size; 260 int i; 261 262 /* 263 * Init any data related to initrd. It's a nop if INITRD is 264 * not selected. Once that done we can determine the low bound 265 * of usable memory. 266 */ 267 reserved_end = max(init_initrd(), 268 (unsigned long) PFN_UP(__pa_symbol(&_end))); 269 270 /* 271 * max_low_pfn is not a number of pages. The number of pages 272 * of the system is given by 'max_low_pfn - min_low_pfn'. 273 */ 274 min_low_pfn = ~0UL; 275 max_low_pfn = 0; 276 277 /* 278 * Find the highest page frame number we have available. 279 */ 280 for (i = 0; i < boot_mem_map.nr_map; i++) { 281 unsigned long start, end; 282 283 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) 284 continue; 285 286 start = PFN_UP(boot_mem_map.map[i].addr); 287 end = PFN_DOWN(boot_mem_map.map[i].addr 288 + boot_mem_map.map[i].size); 289 290 if (end > max_low_pfn) 291 max_low_pfn = end; 292 if (start < min_low_pfn) 293 min_low_pfn = start; 294 if (end <= reserved_end) 295 continue; 296 if (start >= mapstart) 297 continue; 298 mapstart = max(reserved_end, start); 299 } 300 301 if (min_low_pfn >= max_low_pfn) 302 panic("Incorrect memory mapping !!!"); 303 if (min_low_pfn > ARCH_PFN_OFFSET) { 304 pr_info("Wasting %lu bytes for tracking %lu unused pages\n", 305 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page), 306 min_low_pfn - ARCH_PFN_OFFSET); 307 } else if (min_low_pfn < ARCH_PFN_OFFSET) { 308 pr_info("%lu free pages won't be used\n", 309 ARCH_PFN_OFFSET - min_low_pfn); 310 } 311 min_low_pfn = ARCH_PFN_OFFSET; 312 313 /* 314 * Determine low and high memory ranges 315 */ 316 max_pfn = max_low_pfn; 317 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { 318 #ifdef CONFIG_HIGHMEM 319 highstart_pfn = PFN_DOWN(HIGHMEM_START); 320 highend_pfn = max_low_pfn; 321 #endif 322 max_low_pfn = PFN_DOWN(HIGHMEM_START); 323 } 324 325 /* 326 * Initialize the boot-time allocator with low memory only. 327 */ 328 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart, 329 min_low_pfn, max_low_pfn); 330 331 332 for (i = 0; i < boot_mem_map.nr_map; i++) { 333 unsigned long start, end; 334 335 start = PFN_UP(boot_mem_map.map[i].addr); 336 end = PFN_DOWN(boot_mem_map.map[i].addr 337 + boot_mem_map.map[i].size); 338 339 if (start <= min_low_pfn) 340 start = min_low_pfn; 341 if (start >= end) 342 continue; 343 344 #ifndef CONFIG_HIGHMEM 345 if (end > max_low_pfn) 346 end = max_low_pfn; 347 348 /* 349 * ... finally, is the area going away? 350 */ 351 if (end <= start) 352 continue; 353 #endif 354 355 add_active_range(0, start, end); 356 } 357 358 /* 359 * Register fully available low RAM pages with the bootmem allocator. 360 */ 361 for (i = 0; i < boot_mem_map.nr_map; i++) { 362 unsigned long start, end, size; 363 364 /* 365 * Reserve usable memory. 366 */ 367 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) 368 continue; 369 370 start = PFN_UP(boot_mem_map.map[i].addr); 371 end = PFN_DOWN(boot_mem_map.map[i].addr 372 + boot_mem_map.map[i].size); 373 /* 374 * We are rounding up the start address of usable memory 375 * and at the end of the usable range downwards. 376 */ 377 if (start >= max_low_pfn) 378 continue; 379 if (start < reserved_end) 380 start = reserved_end; 381 if (end > max_low_pfn) 382 end = max_low_pfn; 383 384 /* 385 * ... finally, is the area going away? 386 */ 387 if (end <= start) 388 continue; 389 size = end - start; 390 391 /* Register lowmem ranges */ 392 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT); 393 memory_present(0, start, end); 394 } 395 396 /* 397 * Reserve the bootmap memory. 398 */ 399 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT); 400 401 /* 402 * Reserve initrd memory if needed. 403 */ 404 finalize_initrd(); 405 } 406 407 #endif /* CONFIG_SGI_IP27 */ 408 409 /* 410 * arch_mem_init - initialize memory management subsystem 411 * 412 * o plat_mem_setup() detects the memory configuration and will record detected 413 * memory areas using add_memory_region. 414 * 415 * At this stage the memory configuration of the system is known to the 416 * kernel but generic memory management system is still entirely uninitialized. 417 * 418 * o bootmem_init() 419 * o sparse_init() 420 * o paging_init() 421 * 422 * At this stage the bootmem allocator is ready to use. 423 * 424 * NOTE: historically plat_mem_setup did the entire platform initialization. 425 * This was rather impractical because it meant plat_mem_setup had to 426 * get away without any kind of memory allocator. To keep old code from 427 * breaking plat_setup was just renamed to plat_setup and a second platform 428 * initialization hook for anything else was introduced. 429 */ 430 431 static int usermem __initdata; 432 433 static int __init early_parse_mem(char *p) 434 { 435 unsigned long start, size; 436 437 /* 438 * If a user specifies memory size, we 439 * blow away any automatically generated 440 * size. 441 */ 442 if (usermem == 0) { 443 boot_mem_map.nr_map = 0; 444 usermem = 1; 445 } 446 start = 0; 447 size = memparse(p, &p); 448 if (*p == '@') 449 start = memparse(p + 1, &p); 450 451 add_memory_region(start, size, BOOT_MEM_RAM); 452 return 0; 453 } 454 early_param("mem", early_parse_mem); 455 456 static void __init arch_mem_init(char **cmdline_p) 457 { 458 extern void plat_mem_setup(void); 459 460 /* call board setup routine */ 461 plat_mem_setup(); 462 463 pr_info("Determined physical RAM map:\n"); 464 print_memory_map(); 465 466 #ifdef CONFIG_CMDLINE_BOOL 467 #ifdef CONFIG_CMDLINE_OVERRIDE 468 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 469 #else 470 if (builtin_cmdline[0]) { 471 strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE); 472 strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE); 473 } 474 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 475 #endif 476 #else 477 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 478 #endif 479 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 480 481 *cmdline_p = command_line; 482 483 parse_early_param(); 484 485 if (usermem) { 486 pr_info("User-defined physical RAM map:\n"); 487 print_memory_map(); 488 } 489 490 bootmem_init(); 491 device_tree_init(); 492 sparse_init(); 493 plat_swiotlb_setup(); 494 paging_init(); 495 } 496 497 static void __init resource_init(void) 498 { 499 int i; 500 501 if (UNCAC_BASE != IO_BASE) 502 return; 503 504 code_resource.start = __pa_symbol(&_text); 505 code_resource.end = __pa_symbol(&_etext) - 1; 506 data_resource.start = __pa_symbol(&_etext); 507 data_resource.end = __pa_symbol(&_edata) - 1; 508 509 /* 510 * Request address space for all standard RAM. 511 */ 512 for (i = 0; i < boot_mem_map.nr_map; i++) { 513 struct resource *res; 514 unsigned long start, end; 515 516 start = boot_mem_map.map[i].addr; 517 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; 518 if (start >= HIGHMEM_START) 519 continue; 520 if (end >= HIGHMEM_START) 521 end = HIGHMEM_START - 1; 522 523 res = alloc_bootmem(sizeof(struct resource)); 524 switch (boot_mem_map.map[i].type) { 525 case BOOT_MEM_RAM: 526 case BOOT_MEM_ROM_DATA: 527 res->name = "System RAM"; 528 break; 529 case BOOT_MEM_RESERVED: 530 default: 531 res->name = "reserved"; 532 } 533 534 res->start = start; 535 res->end = end; 536 537 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 538 request_resource(&iomem_resource, res); 539 540 /* 541 * We don't know which RAM region contains kernel data, 542 * so we try it repeatedly and let the resource manager 543 * test it. 544 */ 545 request_resource(res, &code_resource); 546 request_resource(res, &data_resource); 547 } 548 } 549 550 void __init setup_arch(char **cmdline_p) 551 { 552 cpu_probe(); 553 prom_init(); 554 555 #ifdef CONFIG_EARLY_PRINTK 556 setup_early_printk(); 557 #endif 558 cpu_report(); 559 check_bugs_early(); 560 561 #if defined(CONFIG_VT) 562 #if defined(CONFIG_VGA_CONSOLE) 563 conswitchp = &vga_con; 564 #elif defined(CONFIG_DUMMY_CONSOLE) 565 conswitchp = &dummy_con; 566 #endif 567 #endif 568 569 arch_mem_init(cmdline_p); 570 571 resource_init(); 572 plat_smp_setup(); 573 } 574 575 unsigned long kernelsp[NR_CPUS]; 576 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; 577 578 #ifdef CONFIG_DEBUG_FS 579 struct dentry *mips_debugfs_dir; 580 static int __init debugfs_mips(void) 581 { 582 struct dentry *d; 583 584 d = debugfs_create_dir("mips", NULL); 585 if (!d) 586 return -ENOMEM; 587 mips_debugfs_dir = d; 588 return 0; 589 } 590 arch_initcall(debugfs_mips); 591 #endif 592