1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1995 Linus Torvalds 7 * Copyright (C) 1995 Waldorf Electronics 8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle 9 * Copyright (C) 1996 Stoned Elipot 10 * Copyright (C) 1999 Silicon Graphics, Inc. 11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki 12 */ 13 #include <linux/init.h> 14 #include <linux/ioport.h> 15 #include <linux/export.h> 16 #include <linux/screen_info.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/initrd.h> 20 #include <linux/root_dev.h> 21 #include <linux/highmem.h> 22 #include <linux/console.h> 23 #include <linux/pfn.h> 24 #include <linux/debugfs.h> 25 26 #include <asm/addrspace.h> 27 #include <asm/bootinfo.h> 28 #include <asm/bugs.h> 29 #include <asm/cache.h> 30 #include <asm/cpu.h> 31 #include <asm/sections.h> 32 #include <asm/setup.h> 33 #include <asm/smp-ops.h> 34 #include <asm/prom.h> 35 36 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; 37 38 EXPORT_SYMBOL(cpu_data); 39 40 #ifdef CONFIG_VT 41 struct screen_info screen_info; 42 #endif 43 44 /* 45 * Despite it's name this variable is even if we don't have PCI 46 */ 47 unsigned int PCI_DMA_BUS_IS_PHYS; 48 49 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS); 50 51 /* 52 * Setup information 53 * 54 * These are initialized so they are in the .data section 55 */ 56 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; 57 58 EXPORT_SYMBOL(mips_machtype); 59 60 struct boot_mem_map boot_mem_map; 61 62 static char __initdata command_line[COMMAND_LINE_SIZE]; 63 char __initdata arcs_cmdline[COMMAND_LINE_SIZE]; 64 65 #ifdef CONFIG_CMDLINE_BOOL 66 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 67 #endif 68 69 /* 70 * mips_io_port_base is the begin of the address space to which x86 style 71 * I/O ports are mapped. 72 */ 73 const unsigned long mips_io_port_base = -1; 74 EXPORT_SYMBOL(mips_io_port_base); 75 76 static struct resource code_resource = { .name = "Kernel code", }; 77 static struct resource data_resource = { .name = "Kernel data", }; 78 79 void __init add_memory_region(phys_t start, phys_t size, long type) 80 { 81 int x = boot_mem_map.nr_map; 82 struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1; 83 84 /* Sanity check */ 85 if (start + size < start) { 86 pr_warning("Trying to add an invalid memory region, skipped\n"); 87 return; 88 } 89 90 /* 91 * Try to merge with previous entry if any. This is far less than 92 * perfect but is sufficient for most real world cases. 93 */ 94 if (x && prev->addr + prev->size == start && prev->type == type) { 95 prev->size += size; 96 return; 97 } 98 99 if (x == BOOT_MEM_MAP_MAX) { 100 pr_err("Ooops! Too many entries in the memory map!\n"); 101 return; 102 } 103 104 boot_mem_map.map[x].addr = start; 105 boot_mem_map.map[x].size = size; 106 boot_mem_map.map[x].type = type; 107 boot_mem_map.nr_map++; 108 } 109 110 static void __init print_memory_map(void) 111 { 112 int i; 113 const int field = 2 * sizeof(unsigned long); 114 115 for (i = 0; i < boot_mem_map.nr_map; i++) { 116 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ", 117 field, (unsigned long long) boot_mem_map.map[i].size, 118 field, (unsigned long long) boot_mem_map.map[i].addr); 119 120 switch (boot_mem_map.map[i].type) { 121 case BOOT_MEM_RAM: 122 printk(KERN_CONT "(usable)\n"); 123 break; 124 case BOOT_MEM_INIT_RAM: 125 printk(KERN_CONT "(usable after init)\n"); 126 break; 127 case BOOT_MEM_ROM_DATA: 128 printk(KERN_CONT "(ROM data)\n"); 129 break; 130 case BOOT_MEM_RESERVED: 131 printk(KERN_CONT "(reserved)\n"); 132 break; 133 default: 134 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type); 135 break; 136 } 137 } 138 } 139 140 /* 141 * Manage initrd 142 */ 143 #ifdef CONFIG_BLK_DEV_INITRD 144 145 static int __init rd_start_early(char *p) 146 { 147 unsigned long start = memparse(p, &p); 148 149 #ifdef CONFIG_64BIT 150 /* Guess if the sign extension was forgotten by bootloader */ 151 if (start < XKPHYS) 152 start = (int)start; 153 #endif 154 initrd_start = start; 155 initrd_end += start; 156 return 0; 157 } 158 early_param("rd_start", rd_start_early); 159 160 static int __init rd_size_early(char *p) 161 { 162 initrd_end += memparse(p, &p); 163 return 0; 164 } 165 early_param("rd_size", rd_size_early); 166 167 /* it returns the next free pfn after initrd */ 168 static unsigned long __init init_initrd(void) 169 { 170 unsigned long end; 171 172 /* 173 * Board specific code or command line parser should have 174 * already set up initrd_start and initrd_end. In these cases 175 * perfom sanity checks and use them if all looks good. 176 */ 177 if (!initrd_start || initrd_end <= initrd_start) 178 goto disable; 179 180 if (initrd_start & ~PAGE_MASK) { 181 pr_err("initrd start must be page aligned\n"); 182 goto disable; 183 } 184 if (initrd_start < PAGE_OFFSET) { 185 pr_err("initrd start < PAGE_OFFSET\n"); 186 goto disable; 187 } 188 189 /* 190 * Sanitize initrd addresses. For example firmware 191 * can't guess if they need to pass them through 192 * 64-bits values if the kernel has been built in pure 193 * 32-bit. We need also to switch from KSEG0 to XKPHYS 194 * addresses now, so the code can now safely use __pa(). 195 */ 196 end = __pa(initrd_end); 197 initrd_end = (unsigned long)__va(end); 198 initrd_start = (unsigned long)__va(__pa(initrd_start)); 199 200 ROOT_DEV = Root_RAM0; 201 return PFN_UP(end); 202 disable: 203 initrd_start = 0; 204 initrd_end = 0; 205 return 0; 206 } 207 208 static void __init finalize_initrd(void) 209 { 210 unsigned long size = initrd_end - initrd_start; 211 212 if (size == 0) { 213 printk(KERN_INFO "Initrd not found or empty"); 214 goto disable; 215 } 216 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { 217 printk(KERN_ERR "Initrd extends beyond end of memory"); 218 goto disable; 219 } 220 221 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT); 222 initrd_below_start_ok = 1; 223 224 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", 225 initrd_start, size); 226 return; 227 disable: 228 printk(KERN_CONT " - disabling initrd\n"); 229 initrd_start = 0; 230 initrd_end = 0; 231 } 232 233 #else /* !CONFIG_BLK_DEV_INITRD */ 234 235 static unsigned long __init init_initrd(void) 236 { 237 return 0; 238 } 239 240 #define finalize_initrd() do {} while (0) 241 242 #endif 243 244 /* 245 * Initialize the bootmem allocator. It also setup initrd related data 246 * if needed. 247 */ 248 #ifdef CONFIG_SGI_IP27 249 250 static void __init bootmem_init(void) 251 { 252 init_initrd(); 253 finalize_initrd(); 254 } 255 256 #else /* !CONFIG_SGI_IP27 */ 257 258 static void __init bootmem_init(void) 259 { 260 unsigned long reserved_end; 261 unsigned long mapstart = ~0UL; 262 unsigned long bootmap_size; 263 int i; 264 265 /* 266 * Init any data related to initrd. It's a nop if INITRD is 267 * not selected. Once that done we can determine the low bound 268 * of usable memory. 269 */ 270 reserved_end = max(init_initrd(), 271 (unsigned long) PFN_UP(__pa_symbol(&_end))); 272 273 /* 274 * max_low_pfn is not a number of pages. The number of pages 275 * of the system is given by 'max_low_pfn - min_low_pfn'. 276 */ 277 min_low_pfn = ~0UL; 278 max_low_pfn = 0; 279 280 /* 281 * Find the highest page frame number we have available. 282 */ 283 for (i = 0; i < boot_mem_map.nr_map; i++) { 284 unsigned long start, end; 285 286 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) 287 continue; 288 289 start = PFN_UP(boot_mem_map.map[i].addr); 290 end = PFN_DOWN(boot_mem_map.map[i].addr 291 + boot_mem_map.map[i].size); 292 293 if (end > max_low_pfn) 294 max_low_pfn = end; 295 if (start < min_low_pfn) 296 min_low_pfn = start; 297 if (end <= reserved_end) 298 continue; 299 if (start >= mapstart) 300 continue; 301 mapstart = max(reserved_end, start); 302 } 303 304 if (min_low_pfn >= max_low_pfn) 305 panic("Incorrect memory mapping !!!"); 306 if (min_low_pfn > ARCH_PFN_OFFSET) { 307 pr_info("Wasting %lu bytes for tracking %lu unused pages\n", 308 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page), 309 min_low_pfn - ARCH_PFN_OFFSET); 310 } else if (min_low_pfn < ARCH_PFN_OFFSET) { 311 pr_info("%lu free pages won't be used\n", 312 ARCH_PFN_OFFSET - min_low_pfn); 313 } 314 min_low_pfn = ARCH_PFN_OFFSET; 315 316 /* 317 * Determine low and high memory ranges 318 */ 319 max_pfn = max_low_pfn; 320 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { 321 #ifdef CONFIG_HIGHMEM 322 highstart_pfn = PFN_DOWN(HIGHMEM_START); 323 highend_pfn = max_low_pfn; 324 #endif 325 max_low_pfn = PFN_DOWN(HIGHMEM_START); 326 } 327 328 /* 329 * Initialize the boot-time allocator with low memory only. 330 */ 331 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart, 332 min_low_pfn, max_low_pfn); 333 334 335 for (i = 0; i < boot_mem_map.nr_map; i++) { 336 unsigned long start, end; 337 338 start = PFN_UP(boot_mem_map.map[i].addr); 339 end = PFN_DOWN(boot_mem_map.map[i].addr 340 + boot_mem_map.map[i].size); 341 342 if (start <= min_low_pfn) 343 start = min_low_pfn; 344 if (start >= end) 345 continue; 346 347 #ifndef CONFIG_HIGHMEM 348 if (end > max_low_pfn) 349 end = max_low_pfn; 350 351 /* 352 * ... finally, is the area going away? 353 */ 354 if (end <= start) 355 continue; 356 #endif 357 358 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0); 359 } 360 361 /* 362 * Register fully available low RAM pages with the bootmem allocator. 363 */ 364 for (i = 0; i < boot_mem_map.nr_map; i++) { 365 unsigned long start, end, size; 366 367 start = PFN_UP(boot_mem_map.map[i].addr); 368 end = PFN_DOWN(boot_mem_map.map[i].addr 369 + boot_mem_map.map[i].size); 370 371 /* 372 * Reserve usable memory. 373 */ 374 switch (boot_mem_map.map[i].type) { 375 case BOOT_MEM_RAM: 376 break; 377 case BOOT_MEM_INIT_RAM: 378 memory_present(0, start, end); 379 continue; 380 default: 381 /* Not usable memory */ 382 continue; 383 } 384 385 /* 386 * We are rounding up the start address of usable memory 387 * and at the end of the usable range downwards. 388 */ 389 if (start >= max_low_pfn) 390 continue; 391 if (start < reserved_end) 392 start = reserved_end; 393 if (end > max_low_pfn) 394 end = max_low_pfn; 395 396 /* 397 * ... finally, is the area going away? 398 */ 399 if (end <= start) 400 continue; 401 size = end - start; 402 403 /* Register lowmem ranges */ 404 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT); 405 memory_present(0, start, end); 406 } 407 408 /* 409 * Reserve the bootmap memory. 410 */ 411 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT); 412 413 /* 414 * Reserve initrd memory if needed. 415 */ 416 finalize_initrd(); 417 } 418 419 #endif /* CONFIG_SGI_IP27 */ 420 421 /* 422 * arch_mem_init - initialize memory management subsystem 423 * 424 * o plat_mem_setup() detects the memory configuration and will record detected 425 * memory areas using add_memory_region. 426 * 427 * At this stage the memory configuration of the system is known to the 428 * kernel but generic memory management system is still entirely uninitialized. 429 * 430 * o bootmem_init() 431 * o sparse_init() 432 * o paging_init() 433 * 434 * At this stage the bootmem allocator is ready to use. 435 * 436 * NOTE: historically plat_mem_setup did the entire platform initialization. 437 * This was rather impractical because it meant plat_mem_setup had to 438 * get away without any kind of memory allocator. To keep old code from 439 * breaking plat_setup was just renamed to plat_setup and a second platform 440 * initialization hook for anything else was introduced. 441 */ 442 443 static int usermem __initdata; 444 445 static int __init early_parse_mem(char *p) 446 { 447 unsigned long start, size; 448 449 /* 450 * If a user specifies memory size, we 451 * blow away any automatically generated 452 * size. 453 */ 454 if (usermem == 0) { 455 boot_mem_map.nr_map = 0; 456 usermem = 1; 457 } 458 start = 0; 459 size = memparse(p, &p); 460 if (*p == '@') 461 start = memparse(p + 1, &p); 462 463 add_memory_region(start, size, BOOT_MEM_RAM); 464 return 0; 465 } 466 early_param("mem", early_parse_mem); 467 468 static void __init arch_mem_init(char **cmdline_p) 469 { 470 phys_t init_mem, init_end, init_size; 471 472 extern void plat_mem_setup(void); 473 474 /* call board setup routine */ 475 plat_mem_setup(); 476 477 init_mem = PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT; 478 init_end = PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT; 479 init_size = init_end - init_mem; 480 if (init_size) { 481 /* Make sure it is in the boot_mem_map */ 482 int i, found; 483 found = 0; 484 for (i = 0; i < boot_mem_map.nr_map; i++) { 485 if (init_mem >= boot_mem_map.map[i].addr && 486 init_mem < (boot_mem_map.map[i].addr + 487 boot_mem_map.map[i].size)) { 488 found = 1; 489 break; 490 } 491 } 492 if (!found) 493 add_memory_region(init_mem, init_size, 494 BOOT_MEM_INIT_RAM); 495 } 496 497 pr_info("Determined physical RAM map:\n"); 498 print_memory_map(); 499 500 #ifdef CONFIG_CMDLINE_BOOL 501 #ifdef CONFIG_CMDLINE_OVERRIDE 502 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 503 #else 504 if (builtin_cmdline[0]) { 505 strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE); 506 strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE); 507 } 508 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 509 #endif 510 #else 511 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 512 #endif 513 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 514 515 *cmdline_p = command_line; 516 517 parse_early_param(); 518 519 if (usermem) { 520 pr_info("User-defined physical RAM map:\n"); 521 print_memory_map(); 522 } 523 524 bootmem_init(); 525 device_tree_init(); 526 sparse_init(); 527 plat_swiotlb_setup(); 528 paging_init(); 529 } 530 531 static void __init resource_init(void) 532 { 533 int i; 534 535 if (UNCAC_BASE != IO_BASE) 536 return; 537 538 code_resource.start = __pa_symbol(&_text); 539 code_resource.end = __pa_symbol(&_etext) - 1; 540 data_resource.start = __pa_symbol(&_etext); 541 data_resource.end = __pa_symbol(&_edata) - 1; 542 543 /* 544 * Request address space for all standard RAM. 545 */ 546 for (i = 0; i < boot_mem_map.nr_map; i++) { 547 struct resource *res; 548 unsigned long start, end; 549 550 start = boot_mem_map.map[i].addr; 551 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; 552 if (start >= HIGHMEM_START) 553 continue; 554 if (end >= HIGHMEM_START) 555 end = HIGHMEM_START - 1; 556 557 res = alloc_bootmem(sizeof(struct resource)); 558 switch (boot_mem_map.map[i].type) { 559 case BOOT_MEM_RAM: 560 case BOOT_MEM_INIT_RAM: 561 case BOOT_MEM_ROM_DATA: 562 res->name = "System RAM"; 563 break; 564 case BOOT_MEM_RESERVED: 565 default: 566 res->name = "reserved"; 567 } 568 569 res->start = start; 570 res->end = end; 571 572 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 573 request_resource(&iomem_resource, res); 574 575 /* 576 * We don't know which RAM region contains kernel data, 577 * so we try it repeatedly and let the resource manager 578 * test it. 579 */ 580 request_resource(res, &code_resource); 581 request_resource(res, &data_resource); 582 } 583 } 584 585 void __init setup_arch(char **cmdline_p) 586 { 587 cpu_probe(); 588 prom_init(); 589 590 #ifdef CONFIG_EARLY_PRINTK 591 setup_early_printk(); 592 #endif 593 cpu_report(); 594 check_bugs_early(); 595 596 #if defined(CONFIG_VT) 597 #if defined(CONFIG_VGA_CONSOLE) 598 conswitchp = &vga_con; 599 #elif defined(CONFIG_DUMMY_CONSOLE) 600 conswitchp = &dummy_con; 601 #endif 602 #endif 603 604 arch_mem_init(cmdline_p); 605 606 resource_init(); 607 plat_smp_setup(); 608 609 cpu_cache_init(); 610 } 611 612 unsigned long kernelsp[NR_CPUS]; 613 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; 614 615 #ifdef CONFIG_DEBUG_FS 616 struct dentry *mips_debugfs_dir; 617 static int __init debugfs_mips(void) 618 { 619 struct dentry *d; 620 621 d = debugfs_create_dir("mips", NULL); 622 if (!d) 623 return -ENOMEM; 624 mips_debugfs_dir = d; 625 return 0; 626 } 627 arch_initcall(debugfs_mips); 628 #endif 629