xref: /openbmc/linux/arch/mips/kernel/setup.c (revision 1fa6ac37)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/module.h>
16 #include <linux/screen_info.h>
17 #include <linux/bootmem.h>
18 #include <linux/initrd.h>
19 #include <linux/root_dev.h>
20 #include <linux/highmem.h>
21 #include <linux/console.h>
22 #include <linux/pfn.h>
23 #include <linux/debugfs.h>
24 
25 #include <asm/addrspace.h>
26 #include <asm/bootinfo.h>
27 #include <asm/bugs.h>
28 #include <asm/cache.h>
29 #include <asm/cpu.h>
30 #include <asm/sections.h>
31 #include <asm/setup.h>
32 #include <asm/smp-ops.h>
33 #include <asm/system.h>
34 
35 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
36 
37 EXPORT_SYMBOL(cpu_data);
38 
39 #ifdef CONFIG_VT
40 struct screen_info screen_info;
41 #endif
42 
43 /*
44  * Despite it's name this variable is even if we don't have PCI
45  */
46 unsigned int PCI_DMA_BUS_IS_PHYS;
47 
48 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
49 
50 /*
51  * Setup information
52  *
53  * These are initialized so they are in the .data section
54  */
55 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
56 
57 EXPORT_SYMBOL(mips_machtype);
58 
59 struct boot_mem_map boot_mem_map;
60 
61 static char __initdata command_line[COMMAND_LINE_SIZE];
62 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
63 
64 #ifdef CONFIG_CMDLINE_BOOL
65 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
66 #endif
67 
68 /*
69  * mips_io_port_base is the begin of the address space to which x86 style
70  * I/O ports are mapped.
71  */
72 const unsigned long mips_io_port_base __read_mostly = -1;
73 EXPORT_SYMBOL(mips_io_port_base);
74 
75 static struct resource code_resource = { .name = "Kernel code", };
76 static struct resource data_resource = { .name = "Kernel data", };
77 
78 void __init add_memory_region(phys_t start, phys_t size, long type)
79 {
80 	int x = boot_mem_map.nr_map;
81 	struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
82 
83 	/* Sanity check */
84 	if (start + size < start) {
85 		pr_warning("Trying to add an invalid memory region, skipped\n");
86 		return;
87 	}
88 
89 	/*
90 	 * Try to merge with previous entry if any.  This is far less than
91 	 * perfect but is sufficient for most real world cases.
92 	 */
93 	if (x && prev->addr + prev->size == start && prev->type == type) {
94 		prev->size += size;
95 		return;
96 	}
97 
98 	if (x == BOOT_MEM_MAP_MAX) {
99 		pr_err("Ooops! Too many entries in the memory map!\n");
100 		return;
101 	}
102 
103 	boot_mem_map.map[x].addr = start;
104 	boot_mem_map.map[x].size = size;
105 	boot_mem_map.map[x].type = type;
106 	boot_mem_map.nr_map++;
107 }
108 
109 static void __init print_memory_map(void)
110 {
111 	int i;
112 	const int field = 2 * sizeof(unsigned long);
113 
114 	for (i = 0; i < boot_mem_map.nr_map; i++) {
115 		printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
116 		       field, (unsigned long long) boot_mem_map.map[i].size,
117 		       field, (unsigned long long) boot_mem_map.map[i].addr);
118 
119 		switch (boot_mem_map.map[i].type) {
120 		case BOOT_MEM_RAM:
121 			printk(KERN_CONT "(usable)\n");
122 			break;
123 		case BOOT_MEM_ROM_DATA:
124 			printk(KERN_CONT "(ROM data)\n");
125 			break;
126 		case BOOT_MEM_RESERVED:
127 			printk(KERN_CONT "(reserved)\n");
128 			break;
129 		default:
130 			printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
131 			break;
132 		}
133 	}
134 }
135 
136 /*
137  * Manage initrd
138  */
139 #ifdef CONFIG_BLK_DEV_INITRD
140 
141 static int __init rd_start_early(char *p)
142 {
143 	unsigned long start = memparse(p, &p);
144 
145 #ifdef CONFIG_64BIT
146 	/* Guess if the sign extension was forgotten by bootloader */
147 	if (start < XKPHYS)
148 		start = (int)start;
149 #endif
150 	initrd_start = start;
151 	initrd_end += start;
152 	return 0;
153 }
154 early_param("rd_start", rd_start_early);
155 
156 static int __init rd_size_early(char *p)
157 {
158 	initrd_end += memparse(p, &p);
159 	return 0;
160 }
161 early_param("rd_size", rd_size_early);
162 
163 /* it returns the next free pfn after initrd */
164 static unsigned long __init init_initrd(void)
165 {
166 	unsigned long end;
167 
168 	/*
169 	 * Board specific code or command line parser should have
170 	 * already set up initrd_start and initrd_end. In these cases
171 	 * perfom sanity checks and use them if all looks good.
172 	 */
173 	if (!initrd_start || initrd_end <= initrd_start)
174 		goto disable;
175 
176 	if (initrd_start & ~PAGE_MASK) {
177 		pr_err("initrd start must be page aligned\n");
178 		goto disable;
179 	}
180 	if (initrd_start < PAGE_OFFSET) {
181 		pr_err("initrd start < PAGE_OFFSET\n");
182 		goto disable;
183 	}
184 
185 	/*
186 	 * Sanitize initrd addresses. For example firmware
187 	 * can't guess if they need to pass them through
188 	 * 64-bits values if the kernel has been built in pure
189 	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
190 	 * addresses now, so the code can now safely use __pa().
191 	 */
192 	end = __pa(initrd_end);
193 	initrd_end = (unsigned long)__va(end);
194 	initrd_start = (unsigned long)__va(__pa(initrd_start));
195 
196 	ROOT_DEV = Root_RAM0;
197 	return PFN_UP(end);
198 disable:
199 	initrd_start = 0;
200 	initrd_end = 0;
201 	return 0;
202 }
203 
204 static void __init finalize_initrd(void)
205 {
206 	unsigned long size = initrd_end - initrd_start;
207 
208 	if (size == 0) {
209 		printk(KERN_INFO "Initrd not found or empty");
210 		goto disable;
211 	}
212 	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
213 		printk(KERN_ERR "Initrd extends beyond end of memory");
214 		goto disable;
215 	}
216 
217 	reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
218 	initrd_below_start_ok = 1;
219 
220 	pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
221 		initrd_start, size);
222 	return;
223 disable:
224 	printk(KERN_CONT " - disabling initrd\n");
225 	initrd_start = 0;
226 	initrd_end = 0;
227 }
228 
229 #else  /* !CONFIG_BLK_DEV_INITRD */
230 
231 static unsigned long __init init_initrd(void)
232 {
233 	return 0;
234 }
235 
236 #define finalize_initrd()	do {} while (0)
237 
238 #endif
239 
240 /*
241  * Initialize the bootmem allocator. It also setup initrd related data
242  * if needed.
243  */
244 #ifdef CONFIG_SGI_IP27
245 
246 static void __init bootmem_init(void)
247 {
248 	init_initrd();
249 	finalize_initrd();
250 }
251 
252 #else  /* !CONFIG_SGI_IP27 */
253 
254 static void __init bootmem_init(void)
255 {
256 	unsigned long reserved_end;
257 	unsigned long mapstart = ~0UL;
258 	unsigned long bootmap_size;
259 	int i;
260 
261 	/*
262 	 * Init any data related to initrd. It's a nop if INITRD is
263 	 * not selected. Once that done we can determine the low bound
264 	 * of usable memory.
265 	 */
266 	reserved_end = max(init_initrd(),
267 			   (unsigned long) PFN_UP(__pa_symbol(&_end)));
268 
269 	/*
270 	 * max_low_pfn is not a number of pages. The number of pages
271 	 * of the system is given by 'max_low_pfn - min_low_pfn'.
272 	 */
273 	min_low_pfn = ~0UL;
274 	max_low_pfn = 0;
275 
276 	/*
277 	 * Find the highest page frame number we have available.
278 	 */
279 	for (i = 0; i < boot_mem_map.nr_map; i++) {
280 		unsigned long start, end;
281 
282 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
283 			continue;
284 
285 		start = PFN_UP(boot_mem_map.map[i].addr);
286 		end = PFN_DOWN(boot_mem_map.map[i].addr
287 				+ boot_mem_map.map[i].size);
288 
289 		if (end > max_low_pfn)
290 			max_low_pfn = end;
291 		if (start < min_low_pfn)
292 			min_low_pfn = start;
293 		if (end <= reserved_end)
294 			continue;
295 		if (start >= mapstart)
296 			continue;
297 		mapstart = max(reserved_end, start);
298 	}
299 
300 	if (min_low_pfn >= max_low_pfn)
301 		panic("Incorrect memory mapping !!!");
302 	if (min_low_pfn > ARCH_PFN_OFFSET) {
303 		pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
304 			(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
305 			min_low_pfn - ARCH_PFN_OFFSET);
306 	} else if (min_low_pfn < ARCH_PFN_OFFSET) {
307 		pr_info("%lu free pages won't be used\n",
308 			ARCH_PFN_OFFSET - min_low_pfn);
309 	}
310 	min_low_pfn = ARCH_PFN_OFFSET;
311 
312 	/*
313 	 * Determine low and high memory ranges
314 	 */
315 	max_pfn = max_low_pfn;
316 	if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
317 #ifdef CONFIG_HIGHMEM
318 		highstart_pfn = PFN_DOWN(HIGHMEM_START);
319 		highend_pfn = max_low_pfn;
320 #endif
321 		max_low_pfn = PFN_DOWN(HIGHMEM_START);
322 	}
323 
324 	/*
325 	 * Initialize the boot-time allocator with low memory only.
326 	 */
327 	bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
328 					 min_low_pfn, max_low_pfn);
329 
330 
331 	for (i = 0; i < boot_mem_map.nr_map; i++) {
332 		unsigned long start, end;
333 
334 		start = PFN_UP(boot_mem_map.map[i].addr);
335 		end = PFN_DOWN(boot_mem_map.map[i].addr
336 				+ boot_mem_map.map[i].size);
337 
338 		if (start <= min_low_pfn)
339 			start = min_low_pfn;
340 		if (start >= end)
341 			continue;
342 
343 #ifndef CONFIG_HIGHMEM
344 		if (end > max_low_pfn)
345 			end = max_low_pfn;
346 
347 		/*
348 		 * ... finally, is the area going away?
349 		 */
350 		if (end <= start)
351 			continue;
352 #endif
353 
354 		add_active_range(0, start, end);
355 	}
356 
357 	/*
358 	 * Register fully available low RAM pages with the bootmem allocator.
359 	 */
360 	for (i = 0; i < boot_mem_map.nr_map; i++) {
361 		unsigned long start, end, size;
362 
363 		/*
364 		 * Reserve usable memory.
365 		 */
366 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
367 			continue;
368 
369 		start = PFN_UP(boot_mem_map.map[i].addr);
370 		end   = PFN_DOWN(boot_mem_map.map[i].addr
371 				    + boot_mem_map.map[i].size);
372 		/*
373 		 * We are rounding up the start address of usable memory
374 		 * and at the end of the usable range downwards.
375 		 */
376 		if (start >= max_low_pfn)
377 			continue;
378 		if (start < reserved_end)
379 			start = reserved_end;
380 		if (end > max_low_pfn)
381 			end = max_low_pfn;
382 
383 		/*
384 		 * ... finally, is the area going away?
385 		 */
386 		if (end <= start)
387 			continue;
388 		size = end - start;
389 
390 		/* Register lowmem ranges */
391 		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
392 		memory_present(0, start, end);
393 	}
394 
395 	/*
396 	 * Reserve the bootmap memory.
397 	 */
398 	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
399 
400 	/*
401 	 * Reserve initrd memory if needed.
402 	 */
403 	finalize_initrd();
404 }
405 
406 #endif	/* CONFIG_SGI_IP27 */
407 
408 /*
409  * arch_mem_init - initialize memory management subsystem
410  *
411  *  o plat_mem_setup() detects the memory configuration and will record detected
412  *    memory areas using add_memory_region.
413  *
414  * At this stage the memory configuration of the system is known to the
415  * kernel but generic memory management system is still entirely uninitialized.
416  *
417  *  o bootmem_init()
418  *  o sparse_init()
419  *  o paging_init()
420  *
421  * At this stage the bootmem allocator is ready to use.
422  *
423  * NOTE: historically plat_mem_setup did the entire platform initialization.
424  *       This was rather impractical because it meant plat_mem_setup had to
425  * get away without any kind of memory allocator.  To keep old code from
426  * breaking plat_setup was just renamed to plat_setup and a second platform
427  * initialization hook for anything else was introduced.
428  */
429 
430 static int usermem __initdata;
431 
432 static int __init early_parse_mem(char *p)
433 {
434 	unsigned long start, size;
435 
436 	/*
437 	 * If a user specifies memory size, we
438 	 * blow away any automatically generated
439 	 * size.
440 	 */
441 	if (usermem == 0) {
442 		boot_mem_map.nr_map = 0;
443 		usermem = 1;
444  	}
445 	start = 0;
446 	size = memparse(p, &p);
447 	if (*p == '@')
448 		start = memparse(p + 1, &p);
449 
450 	add_memory_region(start, size, BOOT_MEM_RAM);
451 	return 0;
452 }
453 early_param("mem", early_parse_mem);
454 
455 static void __init arch_mem_init(char **cmdline_p)
456 {
457 	extern void plat_mem_setup(void);
458 
459 	/* call board setup routine */
460 	plat_mem_setup();
461 
462 	pr_info("Determined physical RAM map:\n");
463 	print_memory_map();
464 
465 #ifdef CONFIG_CMDLINE_BOOL
466 #ifdef CONFIG_CMDLINE_OVERRIDE
467 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
468 #else
469 	if (builtin_cmdline[0]) {
470 		strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
471 		strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
472 	}
473 	strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
474 #endif
475 #else
476 	strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
477 #endif
478 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
479 
480 	*cmdline_p = command_line;
481 
482 	parse_early_param();
483 
484 	if (usermem) {
485 		pr_info("User-defined physical RAM map:\n");
486 		print_memory_map();
487 	}
488 
489 	bootmem_init();
490 	sparse_init();
491 	paging_init();
492 }
493 
494 static void __init resource_init(void)
495 {
496 	int i;
497 
498 	if (UNCAC_BASE != IO_BASE)
499 		return;
500 
501 	code_resource.start = __pa_symbol(&_text);
502 	code_resource.end = __pa_symbol(&_etext) - 1;
503 	data_resource.start = __pa_symbol(&_etext);
504 	data_resource.end = __pa_symbol(&_edata) - 1;
505 
506 	/*
507 	 * Request address space for all standard RAM.
508 	 */
509 	for (i = 0; i < boot_mem_map.nr_map; i++) {
510 		struct resource *res;
511 		unsigned long start, end;
512 
513 		start = boot_mem_map.map[i].addr;
514 		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
515 		if (start >= HIGHMEM_START)
516 			continue;
517 		if (end >= HIGHMEM_START)
518 			end = HIGHMEM_START - 1;
519 
520 		res = alloc_bootmem(sizeof(struct resource));
521 		switch (boot_mem_map.map[i].type) {
522 		case BOOT_MEM_RAM:
523 		case BOOT_MEM_ROM_DATA:
524 			res->name = "System RAM";
525 			break;
526 		case BOOT_MEM_RESERVED:
527 		default:
528 			res->name = "reserved";
529 		}
530 
531 		res->start = start;
532 		res->end = end;
533 
534 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
535 		request_resource(&iomem_resource, res);
536 
537 		/*
538 		 *  We don't know which RAM region contains kernel data,
539 		 *  so we try it repeatedly and let the resource manager
540 		 *  test it.
541 		 */
542 		request_resource(res, &code_resource);
543 		request_resource(res, &data_resource);
544 	}
545 }
546 
547 void __init setup_arch(char **cmdline_p)
548 {
549 	cpu_probe();
550 	prom_init();
551 
552 #ifdef CONFIG_EARLY_PRINTK
553 	setup_early_printk();
554 #endif
555 	cpu_report();
556 	check_bugs_early();
557 
558 #if defined(CONFIG_VT)
559 #if defined(CONFIG_VGA_CONSOLE)
560 	conswitchp = &vga_con;
561 #elif defined(CONFIG_DUMMY_CONSOLE)
562 	conswitchp = &dummy_con;
563 #endif
564 #endif
565 
566 	arch_mem_init(cmdline_p);
567 
568 	resource_init();
569 	plat_smp_setup();
570 }
571 
572 unsigned long kernelsp[NR_CPUS];
573 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
574 
575 #ifdef CONFIG_DEBUG_FS
576 struct dentry *mips_debugfs_dir;
577 static int __init debugfs_mips(void)
578 {
579 	struct dentry *d;
580 
581 	d = debugfs_create_dir("mips", NULL);
582 	if (!d)
583 		return -ENOMEM;
584 	mips_debugfs_dir = d;
585 	return 0;
586 }
587 arch_initcall(debugfs_mips);
588 #endif
589