1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1995 Linus Torvalds 7 * Copyright (C) 1995 Waldorf Electronics 8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle 9 * Copyright (C) 1996 Stoned Elipot 10 * Copyright (C) 1999 Silicon Graphics, Inc. 11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki 12 */ 13 #include <linux/init.h> 14 #include <linux/ioport.h> 15 #include <linux/export.h> 16 #include <linux/screen_info.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/initrd.h> 20 #include <linux/root_dev.h> 21 #include <linux/highmem.h> 22 #include <linux/console.h> 23 #include <linux/pfn.h> 24 #include <linux/debugfs.h> 25 #include <linux/kexec.h> 26 #include <linux/sizes.h> 27 #include <linux/device.h> 28 #include <linux/dma-contiguous.h> 29 30 #include <asm/addrspace.h> 31 #include <asm/bootinfo.h> 32 #include <asm/bugs.h> 33 #include <asm/cache.h> 34 #include <asm/cdmm.h> 35 #include <asm/cpu.h> 36 #include <asm/debug.h> 37 #include <asm/sections.h> 38 #include <asm/setup.h> 39 #include <asm/smp-ops.h> 40 #include <asm/prom.h> 41 42 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB 43 const char __section(.appended_dtb) __appended_dtb[0x100000]; 44 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */ 45 46 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; 47 48 EXPORT_SYMBOL(cpu_data); 49 50 #ifdef CONFIG_VT 51 struct screen_info screen_info; 52 #endif 53 54 /* 55 * Despite it's name this variable is even if we don't have PCI 56 */ 57 unsigned int PCI_DMA_BUS_IS_PHYS; 58 59 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS); 60 61 /* 62 * Setup information 63 * 64 * These are initialized so they are in the .data section 65 */ 66 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; 67 68 EXPORT_SYMBOL(mips_machtype); 69 70 struct boot_mem_map boot_mem_map; 71 72 static char __initdata command_line[COMMAND_LINE_SIZE]; 73 char __initdata arcs_cmdline[COMMAND_LINE_SIZE]; 74 75 #ifdef CONFIG_CMDLINE_BOOL 76 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 77 #endif 78 79 /* 80 * mips_io_port_base is the begin of the address space to which x86 style 81 * I/O ports are mapped. 82 */ 83 const unsigned long mips_io_port_base = -1; 84 EXPORT_SYMBOL(mips_io_port_base); 85 86 static struct resource code_resource = { .name = "Kernel code", }; 87 static struct resource data_resource = { .name = "Kernel data", }; 88 89 static void *detect_magic __initdata = detect_memory_region; 90 91 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type) 92 { 93 int x = boot_mem_map.nr_map; 94 int i; 95 96 /* Sanity check */ 97 if (start + size < start) { 98 pr_warn("Trying to add an invalid memory region, skipped\n"); 99 return; 100 } 101 102 /* 103 * Try to merge with existing entry, if any. 104 */ 105 for (i = 0; i < boot_mem_map.nr_map; i++) { 106 struct boot_mem_map_entry *entry = boot_mem_map.map + i; 107 unsigned long top; 108 109 if (entry->type != type) 110 continue; 111 112 if (start + size < entry->addr) 113 continue; /* no overlap */ 114 115 if (entry->addr + entry->size < start) 116 continue; /* no overlap */ 117 118 top = max(entry->addr + entry->size, start + size); 119 entry->addr = min(entry->addr, start); 120 entry->size = top - entry->addr; 121 122 return; 123 } 124 125 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) { 126 pr_err("Ooops! Too many entries in the memory map!\n"); 127 return; 128 } 129 130 boot_mem_map.map[x].addr = start; 131 boot_mem_map.map[x].size = size; 132 boot_mem_map.map[x].type = type; 133 boot_mem_map.nr_map++; 134 } 135 136 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max) 137 { 138 void *dm = &detect_magic; 139 phys_addr_t size; 140 141 for (size = sz_min; size < sz_max; size <<= 1) { 142 if (!memcmp(dm, dm + size, sizeof(detect_magic))) 143 break; 144 } 145 146 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n", 147 ((unsigned long long) size) / SZ_1M, 148 (unsigned long long) start, 149 ((unsigned long long) sz_min) / SZ_1M, 150 ((unsigned long long) sz_max) / SZ_1M); 151 152 add_memory_region(start, size, BOOT_MEM_RAM); 153 } 154 155 static void __init print_memory_map(void) 156 { 157 int i; 158 const int field = 2 * sizeof(unsigned long); 159 160 for (i = 0; i < boot_mem_map.nr_map; i++) { 161 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ", 162 field, (unsigned long long) boot_mem_map.map[i].size, 163 field, (unsigned long long) boot_mem_map.map[i].addr); 164 165 switch (boot_mem_map.map[i].type) { 166 case BOOT_MEM_RAM: 167 printk(KERN_CONT "(usable)\n"); 168 break; 169 case BOOT_MEM_INIT_RAM: 170 printk(KERN_CONT "(usable after init)\n"); 171 break; 172 case BOOT_MEM_ROM_DATA: 173 printk(KERN_CONT "(ROM data)\n"); 174 break; 175 case BOOT_MEM_RESERVED: 176 printk(KERN_CONT "(reserved)\n"); 177 break; 178 default: 179 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type); 180 break; 181 } 182 } 183 } 184 185 /* 186 * Manage initrd 187 */ 188 #ifdef CONFIG_BLK_DEV_INITRD 189 190 static int __init rd_start_early(char *p) 191 { 192 unsigned long start = memparse(p, &p); 193 194 #ifdef CONFIG_64BIT 195 /* Guess if the sign extension was forgotten by bootloader */ 196 if (start < XKPHYS) 197 start = (int)start; 198 #endif 199 initrd_start = start; 200 initrd_end += start; 201 return 0; 202 } 203 early_param("rd_start", rd_start_early); 204 205 static int __init rd_size_early(char *p) 206 { 207 initrd_end += memparse(p, &p); 208 return 0; 209 } 210 early_param("rd_size", rd_size_early); 211 212 /* it returns the next free pfn after initrd */ 213 static unsigned long __init init_initrd(void) 214 { 215 unsigned long end; 216 217 /* 218 * Board specific code or command line parser should have 219 * already set up initrd_start and initrd_end. In these cases 220 * perfom sanity checks and use them if all looks good. 221 */ 222 if (!initrd_start || initrd_end <= initrd_start) 223 goto disable; 224 225 if (initrd_start & ~PAGE_MASK) { 226 pr_err("initrd start must be page aligned\n"); 227 goto disable; 228 } 229 if (initrd_start < PAGE_OFFSET) { 230 pr_err("initrd start < PAGE_OFFSET\n"); 231 goto disable; 232 } 233 234 /* 235 * Sanitize initrd addresses. For example firmware 236 * can't guess if they need to pass them through 237 * 64-bits values if the kernel has been built in pure 238 * 32-bit. We need also to switch from KSEG0 to XKPHYS 239 * addresses now, so the code can now safely use __pa(). 240 */ 241 end = __pa(initrd_end); 242 initrd_end = (unsigned long)__va(end); 243 initrd_start = (unsigned long)__va(__pa(initrd_start)); 244 245 ROOT_DEV = Root_RAM0; 246 return PFN_UP(end); 247 disable: 248 initrd_start = 0; 249 initrd_end = 0; 250 return 0; 251 } 252 253 static void __init finalize_initrd(void) 254 { 255 unsigned long size = initrd_end - initrd_start; 256 257 if (size == 0) { 258 printk(KERN_INFO "Initrd not found or empty"); 259 goto disable; 260 } 261 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { 262 printk(KERN_ERR "Initrd extends beyond end of memory"); 263 goto disable; 264 } 265 266 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT); 267 initrd_below_start_ok = 1; 268 269 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", 270 initrd_start, size); 271 return; 272 disable: 273 printk(KERN_CONT " - disabling initrd\n"); 274 initrd_start = 0; 275 initrd_end = 0; 276 } 277 278 #else /* !CONFIG_BLK_DEV_INITRD */ 279 280 static unsigned long __init init_initrd(void) 281 { 282 return 0; 283 } 284 285 #define finalize_initrd() do {} while (0) 286 287 #endif 288 289 /* 290 * Initialize the bootmem allocator. It also setup initrd related data 291 * if needed. 292 */ 293 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA)) 294 295 static void __init bootmem_init(void) 296 { 297 init_initrd(); 298 finalize_initrd(); 299 } 300 301 #else /* !CONFIG_SGI_IP27 */ 302 303 static void __init bootmem_init(void) 304 { 305 unsigned long reserved_end; 306 unsigned long mapstart = ~0UL; 307 unsigned long bootmap_size; 308 int i; 309 310 /* 311 * Sanity check any INITRD first. We don't take it into account 312 * for bootmem setup initially, rely on the end-of-kernel-code 313 * as our memory range starting point. Once bootmem is inited we 314 * will reserve the area used for the initrd. 315 */ 316 init_initrd(); 317 reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end)); 318 319 /* 320 * max_low_pfn is not a number of pages. The number of pages 321 * of the system is given by 'max_low_pfn - min_low_pfn'. 322 */ 323 min_low_pfn = ~0UL; 324 max_low_pfn = 0; 325 326 /* 327 * Find the highest page frame number we have available. 328 */ 329 for (i = 0; i < boot_mem_map.nr_map; i++) { 330 unsigned long start, end; 331 332 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) 333 continue; 334 335 start = PFN_UP(boot_mem_map.map[i].addr); 336 end = PFN_DOWN(boot_mem_map.map[i].addr 337 + boot_mem_map.map[i].size); 338 339 if (end > max_low_pfn) 340 max_low_pfn = end; 341 if (start < min_low_pfn) 342 min_low_pfn = start; 343 if (end <= reserved_end) 344 continue; 345 #ifdef CONFIG_BLK_DEV_INITRD 346 /* Skip zones before initrd and initrd itself */ 347 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end))) 348 continue; 349 #endif 350 if (start >= mapstart) 351 continue; 352 mapstart = max(reserved_end, start); 353 } 354 355 if (min_low_pfn >= max_low_pfn) 356 panic("Incorrect memory mapping !!!"); 357 if (min_low_pfn > ARCH_PFN_OFFSET) { 358 pr_info("Wasting %lu bytes for tracking %lu unused pages\n", 359 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page), 360 min_low_pfn - ARCH_PFN_OFFSET); 361 } else if (min_low_pfn < ARCH_PFN_OFFSET) { 362 pr_info("%lu free pages won't be used\n", 363 ARCH_PFN_OFFSET - min_low_pfn); 364 } 365 min_low_pfn = ARCH_PFN_OFFSET; 366 367 /* 368 * Determine low and high memory ranges 369 */ 370 max_pfn = max_low_pfn; 371 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { 372 #ifdef CONFIG_HIGHMEM 373 highstart_pfn = PFN_DOWN(HIGHMEM_START); 374 highend_pfn = max_low_pfn; 375 #endif 376 max_low_pfn = PFN_DOWN(HIGHMEM_START); 377 } 378 379 #ifdef CONFIG_BLK_DEV_INITRD 380 /* 381 * mapstart should be after initrd_end 382 */ 383 if (initrd_end) 384 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end))); 385 #endif 386 387 /* 388 * Initialize the boot-time allocator with low memory only. 389 */ 390 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart, 391 min_low_pfn, max_low_pfn); 392 393 394 for (i = 0; i < boot_mem_map.nr_map; i++) { 395 unsigned long start, end; 396 397 start = PFN_UP(boot_mem_map.map[i].addr); 398 end = PFN_DOWN(boot_mem_map.map[i].addr 399 + boot_mem_map.map[i].size); 400 401 if (start <= min_low_pfn) 402 start = min_low_pfn; 403 if (start >= end) 404 continue; 405 406 #ifndef CONFIG_HIGHMEM 407 if (end > max_low_pfn) 408 end = max_low_pfn; 409 410 /* 411 * ... finally, is the area going away? 412 */ 413 if (end <= start) 414 continue; 415 #endif 416 417 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0); 418 } 419 420 /* 421 * Register fully available low RAM pages with the bootmem allocator. 422 */ 423 for (i = 0; i < boot_mem_map.nr_map; i++) { 424 unsigned long start, end, size; 425 426 start = PFN_UP(boot_mem_map.map[i].addr); 427 end = PFN_DOWN(boot_mem_map.map[i].addr 428 + boot_mem_map.map[i].size); 429 430 /* 431 * Reserve usable memory. 432 */ 433 switch (boot_mem_map.map[i].type) { 434 case BOOT_MEM_RAM: 435 break; 436 case BOOT_MEM_INIT_RAM: 437 memory_present(0, start, end); 438 continue; 439 default: 440 /* Not usable memory */ 441 continue; 442 } 443 444 /* 445 * We are rounding up the start address of usable memory 446 * and at the end of the usable range downwards. 447 */ 448 if (start >= max_low_pfn) 449 continue; 450 if (start < reserved_end) 451 start = reserved_end; 452 if (end > max_low_pfn) 453 end = max_low_pfn; 454 455 /* 456 * ... finally, is the area going away? 457 */ 458 if (end <= start) 459 continue; 460 size = end - start; 461 462 /* Register lowmem ranges */ 463 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT); 464 memory_present(0, start, end); 465 } 466 467 /* 468 * Reserve the bootmap memory. 469 */ 470 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT); 471 472 /* 473 * Reserve initrd memory if needed. 474 */ 475 finalize_initrd(); 476 } 477 478 #endif /* CONFIG_SGI_IP27 */ 479 480 /* 481 * arch_mem_init - initialize memory management subsystem 482 * 483 * o plat_mem_setup() detects the memory configuration and will record detected 484 * memory areas using add_memory_region. 485 * 486 * At this stage the memory configuration of the system is known to the 487 * kernel but generic memory management system is still entirely uninitialized. 488 * 489 * o bootmem_init() 490 * o sparse_init() 491 * o paging_init() 492 * o dma_contiguous_reserve() 493 * 494 * At this stage the bootmem allocator is ready to use. 495 * 496 * NOTE: historically plat_mem_setup did the entire platform initialization. 497 * This was rather impractical because it meant plat_mem_setup had to 498 * get away without any kind of memory allocator. To keep old code from 499 * breaking plat_setup was just renamed to plat_mem_setup and a second platform 500 * initialization hook for anything else was introduced. 501 */ 502 503 static int usermem __initdata; 504 505 static int __init early_parse_mem(char *p) 506 { 507 phys_addr_t start, size; 508 509 /* 510 * If a user specifies memory size, we 511 * blow away any automatically generated 512 * size. 513 */ 514 if (usermem == 0) { 515 boot_mem_map.nr_map = 0; 516 usermem = 1; 517 } 518 start = 0; 519 size = memparse(p, &p); 520 if (*p == '@') 521 start = memparse(p + 1, &p); 522 523 add_memory_region(start, size, BOOT_MEM_RAM); 524 return 0; 525 } 526 early_param("mem", early_parse_mem); 527 528 #ifdef CONFIG_PROC_VMCORE 529 unsigned long setup_elfcorehdr, setup_elfcorehdr_size; 530 static int __init early_parse_elfcorehdr(char *p) 531 { 532 int i; 533 534 setup_elfcorehdr = memparse(p, &p); 535 536 for (i = 0; i < boot_mem_map.nr_map; i++) { 537 unsigned long start = boot_mem_map.map[i].addr; 538 unsigned long end = (boot_mem_map.map[i].addr + 539 boot_mem_map.map[i].size); 540 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) { 541 /* 542 * Reserve from the elf core header to the end of 543 * the memory segment, that should all be kdump 544 * reserved memory. 545 */ 546 setup_elfcorehdr_size = end - setup_elfcorehdr; 547 break; 548 } 549 } 550 /* 551 * If we don't find it in the memory map, then we shouldn't 552 * have to worry about it, as the new kernel won't use it. 553 */ 554 return 0; 555 } 556 early_param("elfcorehdr", early_parse_elfcorehdr); 557 #endif 558 559 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type) 560 { 561 phys_addr_t size; 562 int i; 563 564 size = end - mem; 565 if (!size) 566 return; 567 568 /* Make sure it is in the boot_mem_map */ 569 for (i = 0; i < boot_mem_map.nr_map; i++) { 570 if (mem >= boot_mem_map.map[i].addr && 571 mem < (boot_mem_map.map[i].addr + 572 boot_mem_map.map[i].size)) 573 return; 574 } 575 add_memory_region(mem, size, type); 576 } 577 578 #ifdef CONFIG_KEXEC 579 static inline unsigned long long get_total_mem(void) 580 { 581 unsigned long long total; 582 583 total = max_pfn - min_low_pfn; 584 return total << PAGE_SHIFT; 585 } 586 587 static void __init mips_parse_crashkernel(void) 588 { 589 unsigned long long total_mem; 590 unsigned long long crash_size, crash_base; 591 int ret; 592 593 total_mem = get_total_mem(); 594 ret = parse_crashkernel(boot_command_line, total_mem, 595 &crash_size, &crash_base); 596 if (ret != 0 || crash_size <= 0) 597 return; 598 599 crashk_res.start = crash_base; 600 crashk_res.end = crash_base + crash_size - 1; 601 } 602 603 static void __init request_crashkernel(struct resource *res) 604 { 605 int ret; 606 607 ret = request_resource(res, &crashk_res); 608 if (!ret) 609 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n", 610 (unsigned long)((crashk_res.end - 611 crashk_res.start + 1) >> 20), 612 (unsigned long)(crashk_res.start >> 20)); 613 } 614 #else /* !defined(CONFIG_KEXEC) */ 615 static void __init mips_parse_crashkernel(void) 616 { 617 } 618 619 static void __init request_crashkernel(struct resource *res) 620 { 621 } 622 #endif /* !defined(CONFIG_KEXEC) */ 623 624 #define USE_PROM_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER) 625 #define USE_DTB_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB) 626 #define EXTEND_WITH_PROM IS_ENABLED(CONFIG_MIPS_CMDLINE_EXTEND) 627 628 static void __init arch_mem_init(char **cmdline_p) 629 { 630 struct memblock_region *reg; 631 extern void plat_mem_setup(void); 632 633 /* call board setup routine */ 634 plat_mem_setup(); 635 636 /* 637 * Make sure all kernel memory is in the maps. The "UP" and 638 * "DOWN" are opposite for initdata since if it crosses over 639 * into another memory section you don't want that to be 640 * freed when the initdata is freed. 641 */ 642 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT, 643 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT, 644 BOOT_MEM_RAM); 645 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT, 646 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT, 647 BOOT_MEM_INIT_RAM); 648 649 pr_info("Determined physical RAM map:\n"); 650 print_memory_map(); 651 652 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE) 653 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 654 #else 655 if ((USE_PROM_CMDLINE && arcs_cmdline[0]) || 656 (USE_DTB_CMDLINE && !boot_command_line[0])) 657 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 658 659 if (EXTEND_WITH_PROM && arcs_cmdline[0]) { 660 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); 661 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); 662 } 663 664 #if defined(CONFIG_CMDLINE_BOOL) 665 if (builtin_cmdline[0]) { 666 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); 667 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 668 } 669 #endif 670 #endif 671 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 672 673 *cmdline_p = command_line; 674 675 parse_early_param(); 676 677 if (usermem) { 678 pr_info("User-defined physical RAM map:\n"); 679 print_memory_map(); 680 } 681 682 bootmem_init(); 683 #ifdef CONFIG_PROC_VMCORE 684 if (setup_elfcorehdr && setup_elfcorehdr_size) { 685 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n", 686 setup_elfcorehdr, setup_elfcorehdr_size); 687 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size, 688 BOOTMEM_DEFAULT); 689 } 690 #endif 691 692 mips_parse_crashkernel(); 693 #ifdef CONFIG_KEXEC 694 if (crashk_res.start != crashk_res.end) 695 reserve_bootmem(crashk_res.start, 696 crashk_res.end - crashk_res.start + 1, 697 BOOTMEM_DEFAULT); 698 #endif 699 device_tree_init(); 700 sparse_init(); 701 plat_swiotlb_setup(); 702 paging_init(); 703 704 dma_contiguous_reserve(PFN_PHYS(max_low_pfn)); 705 /* Tell bootmem about cma reserved memblock section */ 706 for_each_memblock(reserved, reg) 707 if (reg->size != 0) 708 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT); 709 } 710 711 static void __init resource_init(void) 712 { 713 int i; 714 715 if (UNCAC_BASE != IO_BASE) 716 return; 717 718 code_resource.start = __pa_symbol(&_text); 719 code_resource.end = __pa_symbol(&_etext) - 1; 720 data_resource.start = __pa_symbol(&_etext); 721 data_resource.end = __pa_symbol(&_edata) - 1; 722 723 for (i = 0; i < boot_mem_map.nr_map; i++) { 724 struct resource *res; 725 unsigned long start, end; 726 727 start = boot_mem_map.map[i].addr; 728 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; 729 if (start >= HIGHMEM_START) 730 continue; 731 if (end >= HIGHMEM_START) 732 end = HIGHMEM_START - 1; 733 734 res = alloc_bootmem(sizeof(struct resource)); 735 switch (boot_mem_map.map[i].type) { 736 case BOOT_MEM_RAM: 737 case BOOT_MEM_INIT_RAM: 738 case BOOT_MEM_ROM_DATA: 739 res->name = "System RAM"; 740 break; 741 case BOOT_MEM_RESERVED: 742 default: 743 res->name = "reserved"; 744 } 745 746 res->start = start; 747 res->end = end; 748 749 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 750 request_resource(&iomem_resource, res); 751 752 /* 753 * We don't know which RAM region contains kernel data, 754 * so we try it repeatedly and let the resource manager 755 * test it. 756 */ 757 request_resource(res, &code_resource); 758 request_resource(res, &data_resource); 759 request_crashkernel(res); 760 } 761 } 762 763 #ifdef CONFIG_SMP 764 static void __init prefill_possible_map(void) 765 { 766 int i, possible = num_possible_cpus(); 767 768 if (possible > nr_cpu_ids) 769 possible = nr_cpu_ids; 770 771 for (i = 0; i < possible; i++) 772 set_cpu_possible(i, true); 773 for (; i < NR_CPUS; i++) 774 set_cpu_possible(i, false); 775 776 nr_cpu_ids = possible; 777 } 778 #else 779 static inline void prefill_possible_map(void) {} 780 #endif 781 782 void __init setup_arch(char **cmdline_p) 783 { 784 cpu_probe(); 785 prom_init(); 786 787 setup_early_fdc_console(); 788 #ifdef CONFIG_EARLY_PRINTK 789 setup_early_printk(); 790 #endif 791 cpu_report(); 792 check_bugs_early(); 793 794 #if defined(CONFIG_VT) 795 #if defined(CONFIG_VGA_CONSOLE) 796 conswitchp = &vga_con; 797 #elif defined(CONFIG_DUMMY_CONSOLE) 798 conswitchp = &dummy_con; 799 #endif 800 #endif 801 802 arch_mem_init(cmdline_p); 803 804 resource_init(); 805 plat_smp_setup(); 806 prefill_possible_map(); 807 808 cpu_cache_init(); 809 } 810 811 unsigned long kernelsp[NR_CPUS]; 812 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; 813 814 #ifdef CONFIG_DEBUG_FS 815 struct dentry *mips_debugfs_dir; 816 static int __init debugfs_mips(void) 817 { 818 struct dentry *d; 819 820 d = debugfs_create_dir("mips", NULL); 821 if (!d) 822 return -ENOMEM; 823 mips_debugfs_dir = d; 824 return 0; 825 } 826 arch_initcall(debugfs_mips); 827 #endif 828