1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12 */
13 #include <linux/init.h>
14 #include <linux/cpu.h>
15 #include <linux/delay.h>
16 #include <linux/ioport.h>
17 #include <linux/export.h>
18 #include <linux/screen_info.h>
19 #include <linux/memblock.h>
20 #include <linux/initrd.h>
21 #include <linux/root_dev.h>
22 #include <linux/highmem.h>
23 #include <linux/console.h>
24 #include <linux/pfn.h>
25 #include <linux/debugfs.h>
26 #include <linux/kexec.h>
27 #include <linux/sizes.h>
28 #include <linux/device.h>
29 #include <linux/dma-map-ops.h>
30 #include <linux/decompress/generic.h>
31 #include <linux/of_fdt.h>
32 #include <linux/dmi.h>
33 #include <linux/crash_dump.h>
34
35 #include <asm/addrspace.h>
36 #include <asm/bootinfo.h>
37 #include <asm/bugs.h>
38 #include <asm/cache.h>
39 #include <asm/cdmm.h>
40 #include <asm/cpu.h>
41 #include <asm/debug.h>
42 #include <asm/mmzone.h>
43 #include <asm/sections.h>
44 #include <asm/setup.h>
45 #include <asm/smp-ops.h>
46 #include <asm/prom.h>
47 #include <asm/fw/fw.h>
48
49 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
50 char __section(".appended_dtb") __appended_dtb[0x100000];
51 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
52
53 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
54
55 EXPORT_SYMBOL(cpu_data);
56
57 #ifdef CONFIG_VGA_CONSOLE
58 struct screen_info screen_info;
59 #endif
60
61 /*
62 * Setup information
63 *
64 * These are initialized so they are in the .data section
65 */
66 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
67
68 EXPORT_SYMBOL(mips_machtype);
69
70 static char __initdata command_line[COMMAND_LINE_SIZE];
71 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
72
73 #ifdef CONFIG_CMDLINE_BOOL
74 static const char builtin_cmdline[] __initconst = CONFIG_CMDLINE;
75 #else
76 static const char builtin_cmdline[] __initconst = "";
77 #endif
78
79 /*
80 * mips_io_port_base is the begin of the address space to which x86 style
81 * I/O ports are mapped.
82 */
83 unsigned long mips_io_port_base = -1;
84 EXPORT_SYMBOL(mips_io_port_base);
85
86 static struct resource code_resource = { .name = "Kernel code", };
87 static struct resource data_resource = { .name = "Kernel data", };
88 static struct resource bss_resource = { .name = "Kernel bss", };
89
90 unsigned long __kaslr_offset __ro_after_init;
91 EXPORT_SYMBOL(__kaslr_offset);
92
93 static void *detect_magic __initdata = detect_memory_region;
94
95 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
96 unsigned long ARCH_PFN_OFFSET;
97 EXPORT_SYMBOL(ARCH_PFN_OFFSET);
98 #endif
99
detect_memory_region(phys_addr_t start,phys_addr_t sz_min,phys_addr_t sz_max)100 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
101 {
102 void *dm = &detect_magic;
103 phys_addr_t size;
104
105 for (size = sz_min; size < sz_max; size <<= 1) {
106 if (!memcmp(dm, dm + size, sizeof(detect_magic)))
107 break;
108 }
109
110 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
111 ((unsigned long long) size) / SZ_1M,
112 (unsigned long long) start,
113 ((unsigned long long) sz_min) / SZ_1M,
114 ((unsigned long long) sz_max) / SZ_1M);
115
116 memblock_add(start, size);
117 }
118
119 /*
120 * Manage initrd
121 */
122 #ifdef CONFIG_BLK_DEV_INITRD
123
rd_start_early(char * p)124 static int __init rd_start_early(char *p)
125 {
126 unsigned long start = memparse(p, &p);
127
128 #ifdef CONFIG_64BIT
129 /* Guess if the sign extension was forgotten by bootloader */
130 if (start < XKPHYS)
131 start = (int)start;
132 #endif
133 initrd_start = start;
134 initrd_end += start;
135 return 0;
136 }
137 early_param("rd_start", rd_start_early);
138
rd_size_early(char * p)139 static int __init rd_size_early(char *p)
140 {
141 initrd_end += memparse(p, &p);
142 return 0;
143 }
144 early_param("rd_size", rd_size_early);
145
146 /* it returns the next free pfn after initrd */
init_initrd(void)147 static unsigned long __init init_initrd(void)
148 {
149 unsigned long end;
150
151 /*
152 * Board specific code or command line parser should have
153 * already set up initrd_start and initrd_end. In these cases
154 * perfom sanity checks and use them if all looks good.
155 */
156 if (!initrd_start || initrd_end <= initrd_start)
157 goto disable;
158
159 if (initrd_start & ~PAGE_MASK) {
160 pr_err("initrd start must be page aligned\n");
161 goto disable;
162 }
163
164 /*
165 * Sanitize initrd addresses. For example firmware
166 * can't guess if they need to pass them through
167 * 64-bits values if the kernel has been built in pure
168 * 32-bit. We need also to switch from KSEG0 to XKPHYS
169 * addresses now, so the code can now safely use __pa().
170 */
171 end = __pa(initrd_end);
172 initrd_end = (unsigned long)__va(end);
173 initrd_start = (unsigned long)__va(__pa(initrd_start));
174
175 if (initrd_start < PAGE_OFFSET) {
176 pr_err("initrd start < PAGE_OFFSET\n");
177 goto disable;
178 }
179
180 ROOT_DEV = Root_RAM0;
181 return PFN_UP(end);
182 disable:
183 initrd_start = 0;
184 initrd_end = 0;
185 return 0;
186 }
187
188 /* In some conditions (e.g. big endian bootloader with a little endian
189 kernel), the initrd might appear byte swapped. Try to detect this and
190 byte swap it if needed. */
maybe_bswap_initrd(void)191 static void __init maybe_bswap_initrd(void)
192 {
193 #if defined(CONFIG_CPU_CAVIUM_OCTEON)
194 u64 buf;
195
196 /* Check for CPIO signature */
197 if (!memcmp((void *)initrd_start, "070701", 6))
198 return;
199
200 /* Check for compressed initrd */
201 if (decompress_method((unsigned char *)initrd_start, 8, NULL))
202 return;
203
204 /* Try again with a byte swapped header */
205 buf = swab64p((u64 *)initrd_start);
206 if (!memcmp(&buf, "070701", 6) ||
207 decompress_method((unsigned char *)(&buf), 8, NULL)) {
208 unsigned long i;
209
210 pr_info("Byteswapped initrd detected\n");
211 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
212 swab64s((u64 *)i);
213 }
214 #endif
215 }
216
finalize_initrd(void)217 static void __init finalize_initrd(void)
218 {
219 unsigned long size = initrd_end - initrd_start;
220
221 if (size == 0) {
222 printk(KERN_INFO "Initrd not found or empty");
223 goto disable;
224 }
225 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
226 printk(KERN_ERR "Initrd extends beyond end of memory");
227 goto disable;
228 }
229
230 maybe_bswap_initrd();
231
232 memblock_reserve(__pa(initrd_start), size);
233 initrd_below_start_ok = 1;
234
235 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
236 initrd_start, size);
237 return;
238 disable:
239 printk(KERN_CONT " - disabling initrd\n");
240 initrd_start = 0;
241 initrd_end = 0;
242 }
243
244 #else /* !CONFIG_BLK_DEV_INITRD */
245
init_initrd(void)246 static unsigned long __init init_initrd(void)
247 {
248 return 0;
249 }
250
251 #define finalize_initrd() do {} while (0)
252
253 #endif
254
255 /*
256 * Initialize the bootmem allocator. It also setup initrd related data
257 * if needed.
258 */
259 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON64) && defined(CONFIG_NUMA))
260
bootmem_init(void)261 static void __init bootmem_init(void)
262 {
263 init_initrd();
264 finalize_initrd();
265 }
266
267 #else /* !CONFIG_SGI_IP27 */
268
bootmem_init(void)269 static void __init bootmem_init(void)
270 {
271 phys_addr_t ramstart, ramend;
272 unsigned long start, end;
273 int i;
274
275 ramstart = memblock_start_of_DRAM();
276 ramend = memblock_end_of_DRAM();
277
278 /*
279 * Sanity check any INITRD first. We don't take it into account
280 * for bootmem setup initially, rely on the end-of-kernel-code
281 * as our memory range starting point. Once bootmem is inited we
282 * will reserve the area used for the initrd.
283 */
284 init_initrd();
285
286 /* Reserve memory occupied by kernel. */
287 memblock_reserve(__pa_symbol(&_text),
288 __pa_symbol(&_end) - __pa_symbol(&_text));
289
290 /* max_low_pfn is not a number of pages but the end pfn of low mem */
291
292 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
293 ARCH_PFN_OFFSET = PFN_UP(ramstart);
294 #else
295 /*
296 * Reserve any memory between the start of RAM and PHYS_OFFSET
297 */
298 if (ramstart > PHYS_OFFSET)
299 memblock_reserve(PHYS_OFFSET, ramstart - PHYS_OFFSET);
300
301 if (PFN_UP(ramstart) > ARCH_PFN_OFFSET) {
302 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
303 (unsigned long)((PFN_UP(ramstart) - ARCH_PFN_OFFSET) * sizeof(struct page)),
304 (unsigned long)(PFN_UP(ramstart) - ARCH_PFN_OFFSET));
305 }
306 #endif
307
308 min_low_pfn = ARCH_PFN_OFFSET;
309 max_pfn = PFN_DOWN(ramend);
310 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
311 /*
312 * Skip highmem here so we get an accurate max_low_pfn if low
313 * memory stops short of high memory.
314 * If the region overlaps HIGHMEM_START, end is clipped so
315 * max_pfn excludes the highmem portion.
316 */
317 if (start >= PFN_DOWN(HIGHMEM_START))
318 continue;
319 if (end > PFN_DOWN(HIGHMEM_START))
320 end = PFN_DOWN(HIGHMEM_START);
321 if (end > max_low_pfn)
322 max_low_pfn = end;
323 }
324
325 if (min_low_pfn >= max_low_pfn)
326 panic("Incorrect memory mapping !!!");
327
328 if (max_pfn > PFN_DOWN(HIGHMEM_START)) {
329 max_low_pfn = PFN_DOWN(HIGHMEM_START);
330 #ifdef CONFIG_HIGHMEM
331 highstart_pfn = max_low_pfn;
332 highend_pfn = max_pfn;
333 #else
334 max_pfn = max_low_pfn;
335 #endif
336 }
337
338 /*
339 * Reserve initrd memory if needed.
340 */
341 finalize_initrd();
342 }
343
344 #endif /* CONFIG_SGI_IP27 */
345
346 static int usermem __initdata;
347
early_parse_mem(char * p)348 static int __init early_parse_mem(char *p)
349 {
350 phys_addr_t start, size;
351
352 if (!p) {
353 pr_err("mem parameter is empty, do nothing\n");
354 return -EINVAL;
355 }
356
357 /*
358 * If a user specifies memory size, we
359 * blow away any automatically generated
360 * size.
361 */
362 if (usermem == 0) {
363 usermem = 1;
364 memblock_remove(memblock_start_of_DRAM(),
365 memblock_end_of_DRAM() - memblock_start_of_DRAM());
366 }
367 start = 0;
368 size = memparse(p, &p);
369 if (*p == '@')
370 start = memparse(p + 1, &p);
371
372 if (IS_ENABLED(CONFIG_NUMA))
373 memblock_add_node(start, size, pa_to_nid(start), MEMBLOCK_NONE);
374 else
375 memblock_add(start, size);
376
377 return 0;
378 }
379 early_param("mem", early_parse_mem);
380
early_parse_memmap(char * p)381 static int __init early_parse_memmap(char *p)
382 {
383 char *oldp;
384 u64 start_at, mem_size;
385
386 if (!p)
387 return -EINVAL;
388
389 if (!strncmp(p, "exactmap", 8)) {
390 pr_err("\"memmap=exactmap\" invalid on MIPS\n");
391 return 0;
392 }
393
394 oldp = p;
395 mem_size = memparse(p, &p);
396 if (p == oldp)
397 return -EINVAL;
398
399 if (*p == '@') {
400 start_at = memparse(p+1, &p);
401 memblock_add(start_at, mem_size);
402 } else if (*p == '#') {
403 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
404 return -EINVAL;
405 } else if (*p == '$') {
406 start_at = memparse(p+1, &p);
407 memblock_add(start_at, mem_size);
408 memblock_reserve(start_at, mem_size);
409 } else {
410 pr_err("\"memmap\" invalid format!\n");
411 return -EINVAL;
412 }
413
414 if (*p == '\0') {
415 usermem = 1;
416 return 0;
417 } else
418 return -EINVAL;
419 }
420 early_param("memmap", early_parse_memmap);
421
mips_reserve_vmcore(void)422 static void __init mips_reserve_vmcore(void)
423 {
424 #ifdef CONFIG_PROC_VMCORE
425 phys_addr_t start, end;
426 u64 i;
427
428 if (!elfcorehdr_size) {
429 for_each_mem_range(i, &start, &end) {
430 if (elfcorehdr_addr >= start && elfcorehdr_addr < end) {
431 /*
432 * Reserve from the elf core header to the end of
433 * the memory segment, that should all be kdump
434 * reserved memory.
435 */
436 elfcorehdr_size = end - elfcorehdr_addr;
437 break;
438 }
439 }
440 }
441
442 pr_info("Reserving %ldKB of memory at %ldKB for kdump\n",
443 (unsigned long)elfcorehdr_size >> 10, (unsigned long)elfcorehdr_addr >> 10);
444
445 memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
446 #endif
447 }
448
449 #ifdef CONFIG_KEXEC
450
451 /* 64M alignment for crash kernel regions */
452 #define CRASH_ALIGN SZ_64M
453 #define CRASH_ADDR_MAX SZ_512M
454
mips_parse_crashkernel(void)455 static void __init mips_parse_crashkernel(void)
456 {
457 unsigned long long total_mem;
458 unsigned long long crash_size, crash_base;
459 int ret;
460
461 total_mem = memblock_phys_mem_size();
462 ret = parse_crashkernel(boot_command_line, total_mem,
463 &crash_size, &crash_base);
464 if (ret != 0 || crash_size <= 0)
465 return;
466
467 if (crash_base <= 0) {
468 crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN,
469 CRASH_ALIGN,
470 CRASH_ADDR_MAX);
471 if (!crash_base) {
472 pr_warn("crashkernel reservation failed - No suitable area found.\n");
473 return;
474 }
475 } else {
476 unsigned long long start;
477
478 start = memblock_phys_alloc_range(crash_size, 1,
479 crash_base,
480 crash_base + crash_size);
481 if (start != crash_base) {
482 pr_warn("Invalid memory region reserved for crash kernel\n");
483 return;
484 }
485 }
486
487 crashk_res.start = crash_base;
488 crashk_res.end = crash_base + crash_size - 1;
489 }
490
request_crashkernel(struct resource * res)491 static void __init request_crashkernel(struct resource *res)
492 {
493 int ret;
494
495 if (crashk_res.start == crashk_res.end)
496 return;
497
498 ret = request_resource(res, &crashk_res);
499 if (!ret)
500 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
501 (unsigned long)(resource_size(&crashk_res) >> 20),
502 (unsigned long)(crashk_res.start >> 20));
503 }
504 #else /* !defined(CONFIG_KEXEC) */
mips_parse_crashkernel(void)505 static void __init mips_parse_crashkernel(void)
506 {
507 }
508
request_crashkernel(struct resource * res)509 static void __init request_crashkernel(struct resource *res)
510 {
511 }
512 #endif /* !defined(CONFIG_KEXEC) */
513
check_kernel_sections_mem(void)514 static void __init check_kernel_sections_mem(void)
515 {
516 phys_addr_t start = __pa_symbol(&_text);
517 phys_addr_t size = __pa_symbol(&_end) - start;
518
519 if (!memblock_is_region_memory(start, size)) {
520 pr_info("Kernel sections are not in the memory maps\n");
521 memblock_add(start, size);
522 }
523 }
524
bootcmdline_append(const char * s,size_t max)525 static void __init bootcmdline_append(const char *s, size_t max)
526 {
527 if (!s[0] || !max)
528 return;
529
530 if (boot_command_line[0])
531 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
532
533 strlcat(boot_command_line, s, max);
534 }
535
536 #ifdef CONFIG_OF_EARLY_FLATTREE
537
bootcmdline_scan_chosen(unsigned long node,const char * uname,int depth,void * data)538 static int __init bootcmdline_scan_chosen(unsigned long node, const char *uname,
539 int depth, void *data)
540 {
541 bool *dt_bootargs = data;
542 const char *p;
543 int l;
544
545 if (depth != 1 || !data ||
546 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
547 return 0;
548
549 p = of_get_flat_dt_prop(node, "bootargs", &l);
550 if (p != NULL && l > 0) {
551 bootcmdline_append(p, min(l, COMMAND_LINE_SIZE));
552 *dt_bootargs = true;
553 }
554
555 return 1;
556 }
557
558 #endif /* CONFIG_OF_EARLY_FLATTREE */
559
bootcmdline_init(void)560 static void __init bootcmdline_init(void)
561 {
562 bool dt_bootargs = false;
563
564 /*
565 * If CMDLINE_OVERRIDE is enabled then initializing the command line is
566 * trivial - we simply use the built-in command line unconditionally &
567 * unmodified.
568 */
569 if (IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) {
570 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
571 return;
572 }
573
574 /*
575 * If the user specified a built-in command line &
576 * MIPS_CMDLINE_BUILTIN_EXTEND, then the built-in command line is
577 * prepended to arguments from the bootloader or DT so we'll copy them
578 * to the start of boot_command_line here. Otherwise, empty
579 * boot_command_line to undo anything early_init_dt_scan_chosen() did.
580 */
581 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND))
582 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
583 else
584 boot_command_line[0] = 0;
585
586 #ifdef CONFIG_OF_EARLY_FLATTREE
587 /*
588 * If we're configured to take boot arguments from DT, look for those
589 * now.
590 */
591 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB) ||
592 IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND))
593 of_scan_flat_dt(bootcmdline_scan_chosen, &dt_bootargs);
594 #endif
595
596 /*
597 * If we didn't get any arguments from DT (regardless of whether that's
598 * because we weren't configured to look for them, or because we looked
599 * & found none) then we'll take arguments from the bootloader.
600 * plat_mem_setup() should have filled arcs_cmdline with arguments from
601 * the bootloader.
602 */
603 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND) || !dt_bootargs)
604 bootcmdline_append(arcs_cmdline, COMMAND_LINE_SIZE);
605
606 /*
607 * If the user specified a built-in command line & we didn't already
608 * prepend it, we append it to boot_command_line here.
609 */
610 if (IS_ENABLED(CONFIG_CMDLINE_BOOL) &&
611 !IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND))
612 bootcmdline_append(builtin_cmdline, COMMAND_LINE_SIZE);
613 }
614
615 /*
616 * arch_mem_init - initialize memory management subsystem
617 *
618 * o plat_mem_setup() detects the memory configuration and will record detected
619 * memory areas using memblock_add.
620 *
621 * At this stage the memory configuration of the system is known to the
622 * kernel but generic memory management system is still entirely uninitialized.
623 *
624 * o bootmem_init()
625 * o sparse_init()
626 * o paging_init()
627 * o dma_contiguous_reserve()
628 *
629 * At this stage the bootmem allocator is ready to use.
630 *
631 * NOTE: historically plat_mem_setup did the entire platform initialization.
632 * This was rather impractical because it meant plat_mem_setup had to
633 * get away without any kind of memory allocator. To keep old code from
634 * breaking plat_setup was just renamed to plat_mem_setup and a second platform
635 * initialization hook for anything else was introduced.
636 */
arch_mem_init(char ** cmdline_p)637 static void __init arch_mem_init(char **cmdline_p)
638 {
639 /* call board setup routine */
640 plat_mem_setup();
641 memblock_set_bottom_up(true);
642
643 bootcmdline_init();
644 strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
645 *cmdline_p = command_line;
646
647 parse_early_param();
648
649 if (usermem)
650 pr_info("User-defined physical RAM map overwrite\n");
651
652 check_kernel_sections_mem();
653
654 early_init_fdt_reserve_self();
655 early_init_fdt_scan_reserved_mem();
656
657 #ifndef CONFIG_NUMA
658 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
659 #endif
660 bootmem_init();
661
662 /*
663 * Prevent memblock from allocating high memory.
664 * This cannot be done before max_low_pfn is detected, so up
665 * to this point is possible to only reserve physical memory
666 * with memblock_reserve; memblock_alloc* can be used
667 * only after this point
668 */
669 memblock_set_current_limit(PFN_PHYS(max_low_pfn));
670
671 mips_reserve_vmcore();
672
673 mips_parse_crashkernel();
674 device_tree_init();
675
676 /*
677 * In order to reduce the possibility of kernel panic when failed to
678 * get IO TLB memory under CONFIG_SWIOTLB, it is better to allocate
679 * low memory as small as possible before plat_swiotlb_setup(), so
680 * make sparse_init() using top-down allocation.
681 */
682 memblock_set_bottom_up(false);
683 sparse_init();
684 memblock_set_bottom_up(true);
685
686 plat_swiotlb_setup();
687
688 dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
689
690 /* Reserve for hibernation. */
691 memblock_reserve(__pa_symbol(&__nosave_begin),
692 __pa_symbol(&__nosave_end) - __pa_symbol(&__nosave_begin));
693
694 early_memtest(PFN_PHYS(ARCH_PFN_OFFSET), PFN_PHYS(max_low_pfn));
695 }
696
resource_init(void)697 static void __init resource_init(void)
698 {
699 phys_addr_t start, end;
700 u64 i;
701
702 if (UNCAC_BASE != IO_BASE)
703 return;
704
705 code_resource.start = __pa_symbol(&_text);
706 code_resource.end = __pa_symbol(&_etext) - 1;
707 data_resource.start = __pa_symbol(&_etext);
708 data_resource.end = __pa_symbol(&_edata) - 1;
709 bss_resource.start = __pa_symbol(&__bss_start);
710 bss_resource.end = __pa_symbol(&__bss_stop) - 1;
711
712 for_each_mem_range(i, &start, &end) {
713 struct resource *res;
714
715 res = memblock_alloc(sizeof(struct resource), SMP_CACHE_BYTES);
716 if (!res)
717 panic("%s: Failed to allocate %zu bytes\n", __func__,
718 sizeof(struct resource));
719
720 res->start = start;
721 /*
722 * In memblock, end points to the first byte after the
723 * range while in resourses, end points to the last byte in
724 * the range.
725 */
726 res->end = end - 1;
727 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
728 res->name = "System RAM";
729
730 request_resource(&iomem_resource, res);
731
732 /*
733 * We don't know which RAM region contains kernel data,
734 * so we try it repeatedly and let the resource manager
735 * test it.
736 */
737 request_resource(res, &code_resource);
738 request_resource(res, &data_resource);
739 request_resource(res, &bss_resource);
740 request_crashkernel(res);
741 }
742 }
743
744 #ifdef CONFIG_SMP
prefill_possible_map(void)745 static void __init prefill_possible_map(void)
746 {
747 int i, possible = num_possible_cpus();
748
749 if (possible > nr_cpu_ids)
750 possible = nr_cpu_ids;
751
752 for (i = 0; i < possible; i++)
753 set_cpu_possible(i, true);
754 for (; i < NR_CPUS; i++)
755 set_cpu_possible(i, false);
756
757 set_nr_cpu_ids(possible);
758 }
759 #else
prefill_possible_map(void)760 static inline void prefill_possible_map(void) {}
761 #endif
762
setup_rng_seed(void)763 static void __init setup_rng_seed(void)
764 {
765 char *rng_seed_hex = fw_getenv("rngseed");
766 u8 rng_seed[512];
767 size_t len;
768
769 if (!rng_seed_hex)
770 return;
771
772 len = min(sizeof(rng_seed), strlen(rng_seed_hex) / 2);
773 if (hex2bin(rng_seed, rng_seed_hex, len))
774 return;
775
776 add_bootloader_randomness(rng_seed, len);
777 memzero_explicit(rng_seed, len);
778 memzero_explicit(rng_seed_hex, len * 2);
779 }
780
setup_arch(char ** cmdline_p)781 void __init setup_arch(char **cmdline_p)
782 {
783 cpu_probe();
784 mips_cm_probe();
785 prom_init();
786
787 setup_early_fdc_console();
788 #ifdef CONFIG_EARLY_PRINTK
789 setup_early_printk();
790 #endif
791 cpu_report();
792 if (IS_ENABLED(CONFIG_CPU_R4X00_BUGS64))
793 check_bugs64_early();
794
795 #if defined(CONFIG_VT)
796 #if defined(CONFIG_VGA_CONSOLE)
797 conswitchp = &vga_con;
798 #endif
799 #endif
800
801 arch_mem_init(cmdline_p);
802 dmi_setup();
803
804 resource_init();
805 plat_smp_setup();
806 prefill_possible_map();
807
808 cpu_cache_init();
809 paging_init();
810
811 memblock_dump_all();
812
813 setup_rng_seed();
814 }
815
816 unsigned long kernelsp[NR_CPUS];
817 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
818
819 #ifdef CONFIG_DEBUG_FS
820 struct dentry *mips_debugfs_dir;
debugfs_mips(void)821 static int __init debugfs_mips(void)
822 {
823 mips_debugfs_dir = debugfs_create_dir("mips", NULL);
824 return 0;
825 }
826 arch_initcall(debugfs_mips);
827 #endif
828
829 #ifdef CONFIG_DMA_NONCOHERENT
setcoherentio(char * str)830 static int __init setcoherentio(char *str)
831 {
832 dma_default_coherent = true;
833 pr_info("Hardware DMA cache coherency (command line)\n");
834 return 0;
835 }
836 early_param("coherentio", setcoherentio);
837
setnocoherentio(char * str)838 static int __init setnocoherentio(char *str)
839 {
840 dma_default_coherent = false;
841 pr_info("Software DMA cache coherency (command line)\n");
842 return 0;
843 }
844 early_param("nocoherentio", setnocoherentio);
845 #endif
846
arch_cpu_finalize_init(void)847 void __init arch_cpu_finalize_init(void)
848 {
849 unsigned int cpu = smp_processor_id();
850
851 cpu_data[cpu].udelay_val = loops_per_jiffy;
852 check_bugs32();
853
854 if (IS_ENABLED(CONFIG_CPU_R4X00_BUGS64))
855 check_bugs64();
856 }
857