xref: /openbmc/linux/arch/mips/kernel/process.c (revision e53134fe)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000 by Ralf Baechle and others.
7  * Copyright (C) 2005, 2006 by Ralf Baechle (ralf@linux-mips.org)
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  * Copyright (C) 2004 Thiemo Seufer
10  * Copyright (C) 2013  Imagination Technologies Ltd.
11  */
12 #include <linux/errno.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/tick.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/export.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/personality.h>
26 #include <linux/sys.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/kallsyms.h>
30 #include <linux/random.h>
31 #include <linux/prctl.h>
32 #include <linux/nmi.h>
33 #include <linux/cpu.h>
34 
35 #include <asm/asm.h>
36 #include <asm/bootinfo.h>
37 #include <asm/cpu.h>
38 #include <asm/dsemul.h>
39 #include <asm/dsp.h>
40 #include <asm/fpu.h>
41 #include <asm/irq.h>
42 #include <asm/msa.h>
43 #include <asm/pgtable.h>
44 #include <asm/mipsregs.h>
45 #include <asm/processor.h>
46 #include <asm/reg.h>
47 #include <linux/uaccess.h>
48 #include <asm/io.h>
49 #include <asm/elf.h>
50 #include <asm/isadep.h>
51 #include <asm/inst.h>
52 #include <asm/stacktrace.h>
53 #include <asm/irq_regs.h>
54 
55 #ifdef CONFIG_HOTPLUG_CPU
56 void arch_cpu_idle_dead(void)
57 {
58 	play_dead();
59 }
60 #endif
61 
62 asmlinkage void ret_from_fork(void);
63 asmlinkage void ret_from_kernel_thread(void);
64 
65 void start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
66 {
67 	unsigned long status;
68 
69 	/* New thread loses kernel privileges. */
70 	status = regs->cp0_status & ~(ST0_CU0|ST0_CU1|ST0_FR|KU_MASK);
71 	status |= KU_USER;
72 	regs->cp0_status = status;
73 	lose_fpu(0);
74 	clear_thread_flag(TIF_MSA_CTX_LIVE);
75 	clear_used_math();
76 	atomic_set(&current->thread.bd_emu_frame, BD_EMUFRAME_NONE);
77 	init_dsp();
78 	regs->cp0_epc = pc;
79 	regs->regs[29] = sp;
80 }
81 
82 void exit_thread(struct task_struct *tsk)
83 {
84 	/*
85 	 * User threads may have allocated a delay slot emulation frame.
86 	 * If so, clean up that allocation.
87 	 */
88 	if (!(current->flags & PF_KTHREAD))
89 		dsemul_thread_cleanup(tsk);
90 }
91 
92 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
93 {
94 	/*
95 	 * Save any process state which is live in hardware registers to the
96 	 * parent context prior to duplication. This prevents the new child
97 	 * state becoming stale if the parent is preempted before copy_thread()
98 	 * gets a chance to save the parent's live hardware registers to the
99 	 * child context.
100 	 */
101 	preempt_disable();
102 
103 	if (is_msa_enabled())
104 		save_msa(current);
105 	else if (is_fpu_owner())
106 		_save_fp(current);
107 
108 	save_dsp(current);
109 
110 	preempt_enable();
111 
112 	*dst = *src;
113 	return 0;
114 }
115 
116 /*
117  * Copy architecture-specific thread state
118  */
119 int copy_thread_tls(unsigned long clone_flags, unsigned long usp,
120 	unsigned long kthread_arg, struct task_struct *p, unsigned long tls)
121 {
122 	struct thread_info *ti = task_thread_info(p);
123 	struct pt_regs *childregs, *regs = current_pt_regs();
124 	unsigned long childksp;
125 
126 	childksp = (unsigned long)task_stack_page(p) + THREAD_SIZE - 32;
127 
128 	/* set up new TSS. */
129 	childregs = (struct pt_regs *) childksp - 1;
130 	/*  Put the stack after the struct pt_regs.  */
131 	childksp = (unsigned long) childregs;
132 	p->thread.cp0_status = read_c0_status() & ~(ST0_CU2|ST0_CU1);
133 	if (unlikely(p->flags & PF_KTHREAD)) {
134 		/* kernel thread */
135 		unsigned long status = p->thread.cp0_status;
136 		memset(childregs, 0, sizeof(struct pt_regs));
137 		ti->addr_limit = KERNEL_DS;
138 		p->thread.reg16 = usp; /* fn */
139 		p->thread.reg17 = kthread_arg;
140 		p->thread.reg29 = childksp;
141 		p->thread.reg31 = (unsigned long) ret_from_kernel_thread;
142 #if defined(CONFIG_CPU_R3000) || defined(CONFIG_CPU_TX39XX)
143 		status = (status & ~(ST0_KUP | ST0_IEP | ST0_IEC)) |
144 			 ((status & (ST0_KUC | ST0_IEC)) << 2);
145 #else
146 		status |= ST0_EXL;
147 #endif
148 		childregs->cp0_status = status;
149 		return 0;
150 	}
151 
152 	/* user thread */
153 	*childregs = *regs;
154 	childregs->regs[7] = 0; /* Clear error flag */
155 	childregs->regs[2] = 0; /* Child gets zero as return value */
156 	if (usp)
157 		childregs->regs[29] = usp;
158 	ti->addr_limit = USER_DS;
159 
160 	p->thread.reg29 = (unsigned long) childregs;
161 	p->thread.reg31 = (unsigned long) ret_from_fork;
162 
163 	/*
164 	 * New tasks lose permission to use the fpu. This accelerates context
165 	 * switching for most programs since they don't use the fpu.
166 	 */
167 	childregs->cp0_status &= ~(ST0_CU2|ST0_CU1);
168 
169 	clear_tsk_thread_flag(p, TIF_USEDFPU);
170 	clear_tsk_thread_flag(p, TIF_USEDMSA);
171 	clear_tsk_thread_flag(p, TIF_MSA_CTX_LIVE);
172 
173 #ifdef CONFIG_MIPS_MT_FPAFF
174 	clear_tsk_thread_flag(p, TIF_FPUBOUND);
175 #endif /* CONFIG_MIPS_MT_FPAFF */
176 
177 	atomic_set(&p->thread.bd_emu_frame, BD_EMUFRAME_NONE);
178 
179 	if (clone_flags & CLONE_SETTLS)
180 		ti->tp_value = tls;
181 
182 	return 0;
183 }
184 
185 #ifdef CONFIG_STACKPROTECTOR
186 #include <linux/stackprotector.h>
187 unsigned long __stack_chk_guard __read_mostly;
188 EXPORT_SYMBOL(__stack_chk_guard);
189 #endif
190 
191 struct mips_frame_info {
192 	void		*func;
193 	unsigned long	func_size;
194 	int		frame_size;
195 	int		pc_offset;
196 };
197 
198 #define J_TARGET(pc,target)	\
199 		(((unsigned long)(pc) & 0xf0000000) | ((target) << 2))
200 
201 static inline int is_ra_save_ins(union mips_instruction *ip, int *poff)
202 {
203 #ifdef CONFIG_CPU_MICROMIPS
204 	/*
205 	 * swsp ra,offset
206 	 * swm16 reglist,offset(sp)
207 	 * swm32 reglist,offset(sp)
208 	 * sw32 ra,offset(sp)
209 	 * jradiussp - NOT SUPPORTED
210 	 *
211 	 * microMIPS is way more fun...
212 	 */
213 	if (mm_insn_16bit(ip->word >> 16)) {
214 		switch (ip->mm16_r5_format.opcode) {
215 		case mm_swsp16_op:
216 			if (ip->mm16_r5_format.rt != 31)
217 				return 0;
218 
219 			*poff = ip->mm16_r5_format.imm;
220 			*poff = (*poff << 2) / sizeof(ulong);
221 			return 1;
222 
223 		case mm_pool16c_op:
224 			switch (ip->mm16_m_format.func) {
225 			case mm_swm16_op:
226 				*poff = ip->mm16_m_format.imm;
227 				*poff += 1 + ip->mm16_m_format.rlist;
228 				*poff = (*poff << 2) / sizeof(ulong);
229 				return 1;
230 
231 			default:
232 				return 0;
233 			}
234 
235 		default:
236 			return 0;
237 		}
238 	}
239 
240 	switch (ip->i_format.opcode) {
241 	case mm_sw32_op:
242 		if (ip->i_format.rs != 29)
243 			return 0;
244 		if (ip->i_format.rt != 31)
245 			return 0;
246 
247 		*poff = ip->i_format.simmediate / sizeof(ulong);
248 		return 1;
249 
250 	case mm_pool32b_op:
251 		switch (ip->mm_m_format.func) {
252 		case mm_swm32_func:
253 			if (ip->mm_m_format.rd < 0x10)
254 				return 0;
255 			if (ip->mm_m_format.base != 29)
256 				return 0;
257 
258 			*poff = ip->mm_m_format.simmediate;
259 			*poff += (ip->mm_m_format.rd & 0xf) * sizeof(u32);
260 			*poff /= sizeof(ulong);
261 			return 1;
262 		default:
263 			return 0;
264 		}
265 
266 	default:
267 		return 0;
268 	}
269 #else
270 	/* sw / sd $ra, offset($sp) */
271 	if ((ip->i_format.opcode == sw_op || ip->i_format.opcode == sd_op) &&
272 		ip->i_format.rs == 29 && ip->i_format.rt == 31) {
273 		*poff = ip->i_format.simmediate / sizeof(ulong);
274 		return 1;
275 	}
276 
277 	return 0;
278 #endif
279 }
280 
281 static inline int is_jump_ins(union mips_instruction *ip)
282 {
283 #ifdef CONFIG_CPU_MICROMIPS
284 	/*
285 	 * jr16,jrc,jalr16,jalr16
286 	 * jal
287 	 * jalr/jr,jalr.hb/jr.hb,jalrs,jalrs.hb
288 	 * jraddiusp - NOT SUPPORTED
289 	 *
290 	 * microMIPS is kind of more fun...
291 	 */
292 	if (mm_insn_16bit(ip->word >> 16)) {
293 		if ((ip->mm16_r5_format.opcode == mm_pool16c_op &&
294 		    (ip->mm16_r5_format.rt & mm_jr16_op) == mm_jr16_op))
295 			return 1;
296 		return 0;
297 	}
298 
299 	if (ip->j_format.opcode == mm_j32_op)
300 		return 1;
301 	if (ip->j_format.opcode == mm_jal32_op)
302 		return 1;
303 	if (ip->r_format.opcode != mm_pool32a_op ||
304 			ip->r_format.func != mm_pool32axf_op)
305 		return 0;
306 	return ((ip->u_format.uimmediate >> 6) & mm_jalr_op) == mm_jalr_op;
307 #else
308 	if (ip->j_format.opcode == j_op)
309 		return 1;
310 	if (ip->j_format.opcode == jal_op)
311 		return 1;
312 	if (ip->r_format.opcode != spec_op)
313 		return 0;
314 	return ip->r_format.func == jalr_op || ip->r_format.func == jr_op;
315 #endif
316 }
317 
318 static inline int is_sp_move_ins(union mips_instruction *ip, int *frame_size)
319 {
320 #ifdef CONFIG_CPU_MICROMIPS
321 	unsigned short tmp;
322 
323 	/*
324 	 * addiusp -imm
325 	 * addius5 sp,-imm
326 	 * addiu32 sp,sp,-imm
327 	 * jradiussp - NOT SUPPORTED
328 	 *
329 	 * microMIPS is not more fun...
330 	 */
331 	if (mm_insn_16bit(ip->word >> 16)) {
332 		if (ip->mm16_r3_format.opcode == mm_pool16d_op &&
333 		    ip->mm16_r3_format.simmediate & mm_addiusp_func) {
334 			tmp = ip->mm_b0_format.simmediate >> 1;
335 			tmp = ((tmp & 0x1ff) ^ 0x100) - 0x100;
336 			if ((tmp + 2) < 4) /* 0x0,0x1,0x1fe,0x1ff are special */
337 				tmp ^= 0x100;
338 			*frame_size = -(signed short)(tmp << 2);
339 			return 1;
340 		}
341 		if (ip->mm16_r5_format.opcode == mm_pool16d_op &&
342 		    ip->mm16_r5_format.rt == 29) {
343 			tmp = ip->mm16_r5_format.imm >> 1;
344 			*frame_size = -(signed short)(tmp & 0xf);
345 			return 1;
346 		}
347 		return 0;
348 	}
349 
350 	if (ip->mm_i_format.opcode == mm_addiu32_op &&
351 	    ip->mm_i_format.rt == 29 && ip->mm_i_format.rs == 29) {
352 		*frame_size = -ip->i_format.simmediate;
353 		return 1;
354 	}
355 #else
356 	/* addiu/daddiu sp,sp,-imm */
357 	if (ip->i_format.rs != 29 || ip->i_format.rt != 29)
358 		return 0;
359 
360 	if (ip->i_format.opcode == addiu_op ||
361 	    ip->i_format.opcode == daddiu_op) {
362 		*frame_size = -ip->i_format.simmediate;
363 		return 1;
364 	}
365 #endif
366 	return 0;
367 }
368 
369 static int get_frame_info(struct mips_frame_info *info)
370 {
371 	bool is_mmips = IS_ENABLED(CONFIG_CPU_MICROMIPS);
372 	union mips_instruction insn, *ip, *ip_end;
373 	const unsigned int max_insns = 128;
374 	unsigned int last_insn_size = 0;
375 	unsigned int i;
376 	bool saw_jump = false;
377 
378 	info->pc_offset = -1;
379 	info->frame_size = 0;
380 
381 	ip = (void *)msk_isa16_mode((ulong)info->func);
382 	if (!ip)
383 		goto err;
384 
385 	ip_end = (void *)ip + info->func_size;
386 
387 	for (i = 0; i < max_insns && ip < ip_end; i++) {
388 		ip = (void *)ip + last_insn_size;
389 		if (is_mmips && mm_insn_16bit(ip->halfword[0])) {
390 			insn.word = ip->halfword[0] << 16;
391 			last_insn_size = 2;
392 		} else if (is_mmips) {
393 			insn.word = ip->halfword[0] << 16 | ip->halfword[1];
394 			last_insn_size = 4;
395 		} else {
396 			insn.word = ip->word;
397 			last_insn_size = 4;
398 		}
399 
400 		if (!info->frame_size) {
401 			is_sp_move_ins(&insn, &info->frame_size);
402 			continue;
403 		} else if (!saw_jump && is_jump_ins(ip)) {
404 			/*
405 			 * If we see a jump instruction, we are finished
406 			 * with the frame save.
407 			 *
408 			 * Some functions can have a shortcut return at
409 			 * the beginning of the function, so don't start
410 			 * looking for jump instruction until we see the
411 			 * frame setup.
412 			 *
413 			 * The RA save instruction can get put into the
414 			 * delay slot of the jump instruction, so look
415 			 * at the next instruction, too.
416 			 */
417 			saw_jump = true;
418 			continue;
419 		}
420 		if (info->pc_offset == -1 &&
421 		    is_ra_save_ins(&insn, &info->pc_offset))
422 			break;
423 		if (saw_jump)
424 			break;
425 	}
426 	if (info->frame_size && info->pc_offset >= 0) /* nested */
427 		return 0;
428 	if (info->pc_offset < 0) /* leaf */
429 		return 1;
430 	/* prologue seems bogus... */
431 err:
432 	return -1;
433 }
434 
435 static struct mips_frame_info schedule_mfi __read_mostly;
436 
437 #ifdef CONFIG_KALLSYMS
438 static unsigned long get___schedule_addr(void)
439 {
440 	return kallsyms_lookup_name("__schedule");
441 }
442 #else
443 static unsigned long get___schedule_addr(void)
444 {
445 	union mips_instruction *ip = (void *)schedule;
446 	int max_insns = 8;
447 	int i;
448 
449 	for (i = 0; i < max_insns; i++, ip++) {
450 		if (ip->j_format.opcode == j_op)
451 			return J_TARGET(ip, ip->j_format.target);
452 	}
453 	return 0;
454 }
455 #endif
456 
457 static int __init frame_info_init(void)
458 {
459 	unsigned long size = 0;
460 #ifdef CONFIG_KALLSYMS
461 	unsigned long ofs;
462 #endif
463 	unsigned long addr;
464 
465 	addr = get___schedule_addr();
466 	if (!addr)
467 		addr = (unsigned long)schedule;
468 
469 #ifdef CONFIG_KALLSYMS
470 	kallsyms_lookup_size_offset(addr, &size, &ofs);
471 #endif
472 	schedule_mfi.func = (void *)addr;
473 	schedule_mfi.func_size = size;
474 
475 	get_frame_info(&schedule_mfi);
476 
477 	/*
478 	 * Without schedule() frame info, result given by
479 	 * thread_saved_pc() and get_wchan() are not reliable.
480 	 */
481 	if (schedule_mfi.pc_offset < 0)
482 		printk("Can't analyze schedule() prologue at %p\n", schedule);
483 
484 	return 0;
485 }
486 
487 arch_initcall(frame_info_init);
488 
489 /*
490  * Return saved PC of a blocked thread.
491  */
492 static unsigned long thread_saved_pc(struct task_struct *tsk)
493 {
494 	struct thread_struct *t = &tsk->thread;
495 
496 	/* New born processes are a special case */
497 	if (t->reg31 == (unsigned long) ret_from_fork)
498 		return t->reg31;
499 	if (schedule_mfi.pc_offset < 0)
500 		return 0;
501 	return ((unsigned long *)t->reg29)[schedule_mfi.pc_offset];
502 }
503 
504 
505 #ifdef CONFIG_KALLSYMS
506 /* generic stack unwinding function */
507 unsigned long notrace unwind_stack_by_address(unsigned long stack_page,
508 					      unsigned long *sp,
509 					      unsigned long pc,
510 					      unsigned long *ra)
511 {
512 	unsigned long low, high, irq_stack_high;
513 	struct mips_frame_info info;
514 	unsigned long size, ofs;
515 	struct pt_regs *regs;
516 	int leaf;
517 
518 	if (!stack_page)
519 		return 0;
520 
521 	/*
522 	 * IRQ stacks start at IRQ_STACK_START
523 	 * task stacks at THREAD_SIZE - 32
524 	 */
525 	low = stack_page;
526 	if (!preemptible() && on_irq_stack(raw_smp_processor_id(), *sp)) {
527 		high = stack_page + IRQ_STACK_START;
528 		irq_stack_high = high;
529 	} else {
530 		high = stack_page + THREAD_SIZE - 32;
531 		irq_stack_high = 0;
532 	}
533 
534 	/*
535 	 * If we reached the top of the interrupt stack, start unwinding
536 	 * the interrupted task stack.
537 	 */
538 	if (unlikely(*sp == irq_stack_high)) {
539 		unsigned long task_sp = *(unsigned long *)*sp;
540 
541 		/*
542 		 * Check that the pointer saved in the IRQ stack head points to
543 		 * something within the stack of the current task
544 		 */
545 		if (!object_is_on_stack((void *)task_sp))
546 			return 0;
547 
548 		/*
549 		 * Follow pointer to tasks kernel stack frame where interrupted
550 		 * state was saved.
551 		 */
552 		regs = (struct pt_regs *)task_sp;
553 		pc = regs->cp0_epc;
554 		if (!user_mode(regs) && __kernel_text_address(pc)) {
555 			*sp = regs->regs[29];
556 			*ra = regs->regs[31];
557 			return pc;
558 		}
559 		return 0;
560 	}
561 	if (!kallsyms_lookup_size_offset(pc, &size, &ofs))
562 		return 0;
563 	/*
564 	 * Return ra if an exception occurred at the first instruction
565 	 */
566 	if (unlikely(ofs == 0)) {
567 		pc = *ra;
568 		*ra = 0;
569 		return pc;
570 	}
571 
572 	info.func = (void *)(pc - ofs);
573 	info.func_size = ofs;	/* analyze from start to ofs */
574 	leaf = get_frame_info(&info);
575 	if (leaf < 0)
576 		return 0;
577 
578 	if (*sp < low || *sp + info.frame_size > high)
579 		return 0;
580 
581 	if (leaf)
582 		/*
583 		 * For some extreme cases, get_frame_info() can
584 		 * consider wrongly a nested function as a leaf
585 		 * one. In that cases avoid to return always the
586 		 * same value.
587 		 */
588 		pc = pc != *ra ? *ra : 0;
589 	else
590 		pc = ((unsigned long *)(*sp))[info.pc_offset];
591 
592 	*sp += info.frame_size;
593 	*ra = 0;
594 	return __kernel_text_address(pc) ? pc : 0;
595 }
596 EXPORT_SYMBOL(unwind_stack_by_address);
597 
598 /* used by show_backtrace() */
599 unsigned long unwind_stack(struct task_struct *task, unsigned long *sp,
600 			   unsigned long pc, unsigned long *ra)
601 {
602 	unsigned long stack_page = 0;
603 	int cpu;
604 
605 	for_each_possible_cpu(cpu) {
606 		if (on_irq_stack(cpu, *sp)) {
607 			stack_page = (unsigned long)irq_stack[cpu];
608 			break;
609 		}
610 	}
611 
612 	if (!stack_page)
613 		stack_page = (unsigned long)task_stack_page(task);
614 
615 	return unwind_stack_by_address(stack_page, sp, pc, ra);
616 }
617 #endif
618 
619 /*
620  * get_wchan - a maintenance nightmare^W^Wpain in the ass ...
621  */
622 unsigned long get_wchan(struct task_struct *task)
623 {
624 	unsigned long pc = 0;
625 #ifdef CONFIG_KALLSYMS
626 	unsigned long sp;
627 	unsigned long ra = 0;
628 #endif
629 
630 	if (!task || task == current || task->state == TASK_RUNNING)
631 		goto out;
632 	if (!task_stack_page(task))
633 		goto out;
634 
635 	pc = thread_saved_pc(task);
636 
637 #ifdef CONFIG_KALLSYMS
638 	sp = task->thread.reg29 + schedule_mfi.frame_size;
639 
640 	while (in_sched_functions(pc))
641 		pc = unwind_stack(task, &sp, pc, &ra);
642 #endif
643 
644 out:
645 	return pc;
646 }
647 
648 /*
649  * Don't forget that the stack pointer must be aligned on a 8 bytes
650  * boundary for 32-bits ABI and 16 bytes for 64-bits ABI.
651  */
652 unsigned long arch_align_stack(unsigned long sp)
653 {
654 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
655 		sp -= get_random_int() & ~PAGE_MASK;
656 
657 	return sp & ALMASK;
658 }
659 
660 static DEFINE_PER_CPU(call_single_data_t, backtrace_csd);
661 static struct cpumask backtrace_csd_busy;
662 
663 static void handle_backtrace(void *info)
664 {
665 	nmi_cpu_backtrace(get_irq_regs());
666 	cpumask_clear_cpu(smp_processor_id(), &backtrace_csd_busy);
667 }
668 
669 static void raise_backtrace(cpumask_t *mask)
670 {
671 	call_single_data_t *csd;
672 	int cpu;
673 
674 	for_each_cpu(cpu, mask) {
675 		/*
676 		 * If we previously sent an IPI to the target CPU & it hasn't
677 		 * cleared its bit in the busy cpumask then it didn't handle
678 		 * our previous IPI & it's not safe for us to reuse the
679 		 * call_single_data_t.
680 		 */
681 		if (cpumask_test_and_set_cpu(cpu, &backtrace_csd_busy)) {
682 			pr_warn("Unable to send backtrace IPI to CPU%u - perhaps it hung?\n",
683 				cpu);
684 			continue;
685 		}
686 
687 		csd = &per_cpu(backtrace_csd, cpu);
688 		csd->func = handle_backtrace;
689 		smp_call_function_single_async(cpu, csd);
690 	}
691 }
692 
693 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
694 {
695 	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_backtrace);
696 }
697 
698 int mips_get_process_fp_mode(struct task_struct *task)
699 {
700 	int value = 0;
701 
702 	if (!test_tsk_thread_flag(task, TIF_32BIT_FPREGS))
703 		value |= PR_FP_MODE_FR;
704 	if (test_tsk_thread_flag(task, TIF_HYBRID_FPREGS))
705 		value |= PR_FP_MODE_FRE;
706 
707 	return value;
708 }
709 
710 static long prepare_for_fp_mode_switch(void *unused)
711 {
712 	/*
713 	 * This is icky, but we use this to simply ensure that all CPUs have
714 	 * context switched, regardless of whether they were previously running
715 	 * kernel or user code. This ensures that no CPU currently has its FPU
716 	 * enabled, or is about to attempt to enable it through any path other
717 	 * than enable_restore_fp_context() which will wait appropriately for
718 	 * fp_mode_switching to be zero.
719 	 */
720 	return 0;
721 }
722 
723 int mips_set_process_fp_mode(struct task_struct *task, unsigned int value)
724 {
725 	const unsigned int known_bits = PR_FP_MODE_FR | PR_FP_MODE_FRE;
726 	struct task_struct *t;
727 	struct cpumask process_cpus;
728 	int cpu;
729 
730 	/* If nothing to change, return right away, successfully.  */
731 	if (value == mips_get_process_fp_mode(task))
732 		return 0;
733 
734 	/* Only accept a mode change if 64-bit FP enabled for o32.  */
735 	if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
736 		return -EOPNOTSUPP;
737 
738 	/* And only for o32 tasks.  */
739 	if (IS_ENABLED(CONFIG_64BIT) && !test_thread_flag(TIF_32BIT_REGS))
740 		return -EOPNOTSUPP;
741 
742 	/* Check the value is valid */
743 	if (value & ~known_bits)
744 		return -EOPNOTSUPP;
745 
746 	/* Setting FRE without FR is not supported.  */
747 	if ((value & (PR_FP_MODE_FR | PR_FP_MODE_FRE)) == PR_FP_MODE_FRE)
748 		return -EOPNOTSUPP;
749 
750 	/* Avoid inadvertently triggering emulation */
751 	if ((value & PR_FP_MODE_FR) && raw_cpu_has_fpu &&
752 	    !(raw_current_cpu_data.fpu_id & MIPS_FPIR_F64))
753 		return -EOPNOTSUPP;
754 	if ((value & PR_FP_MODE_FRE) && raw_cpu_has_fpu && !cpu_has_fre)
755 		return -EOPNOTSUPP;
756 
757 	/* FR = 0 not supported in MIPS R6 */
758 	if (!(value & PR_FP_MODE_FR) && raw_cpu_has_fpu && cpu_has_mips_r6)
759 		return -EOPNOTSUPP;
760 
761 	/* Indicate the new FP mode in each thread */
762 	for_each_thread(task, t) {
763 		/* Update desired FP register width */
764 		if (value & PR_FP_MODE_FR) {
765 			clear_tsk_thread_flag(t, TIF_32BIT_FPREGS);
766 		} else {
767 			set_tsk_thread_flag(t, TIF_32BIT_FPREGS);
768 			clear_tsk_thread_flag(t, TIF_MSA_CTX_LIVE);
769 		}
770 
771 		/* Update desired FP single layout */
772 		if (value & PR_FP_MODE_FRE)
773 			set_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
774 		else
775 			clear_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
776 	}
777 
778 	/*
779 	 * We need to ensure that all threads in the process have switched mode
780 	 * before returning, in order to allow userland to not worry about
781 	 * races. We can do this by forcing all CPUs that any thread in the
782 	 * process may be running on to schedule something else - in this case
783 	 * prepare_for_fp_mode_switch().
784 	 *
785 	 * We begin by generating a mask of all CPUs that any thread in the
786 	 * process may be running on.
787 	 */
788 	cpumask_clear(&process_cpus);
789 	for_each_thread(task, t)
790 		cpumask_set_cpu(task_cpu(t), &process_cpus);
791 
792 	/*
793 	 * Now we schedule prepare_for_fp_mode_switch() on each of those CPUs.
794 	 *
795 	 * The CPUs may have rescheduled already since we switched mode or
796 	 * generated the cpumask, but that doesn't matter. If the task in this
797 	 * process is scheduled out then our scheduling
798 	 * prepare_for_fp_mode_switch() will simply be redundant. If it's
799 	 * scheduled in then it will already have picked up the new FP mode
800 	 * whilst doing so.
801 	 */
802 	get_online_cpus();
803 	for_each_cpu_and(cpu, &process_cpus, cpu_online_mask)
804 		work_on_cpu(cpu, prepare_for_fp_mode_switch, NULL);
805 	put_online_cpus();
806 
807 	wake_up_var(&task->mm->context.fp_mode_switching);
808 
809 	return 0;
810 }
811 
812 #if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
813 void mips_dump_regs32(u32 *uregs, const struct pt_regs *regs)
814 {
815 	unsigned int i;
816 
817 	for (i = MIPS32_EF_R1; i <= MIPS32_EF_R31; i++) {
818 		/* k0/k1 are copied as zero. */
819 		if (i == MIPS32_EF_R26 || i == MIPS32_EF_R27)
820 			uregs[i] = 0;
821 		else
822 			uregs[i] = regs->regs[i - MIPS32_EF_R0];
823 	}
824 
825 	uregs[MIPS32_EF_LO] = regs->lo;
826 	uregs[MIPS32_EF_HI] = regs->hi;
827 	uregs[MIPS32_EF_CP0_EPC] = regs->cp0_epc;
828 	uregs[MIPS32_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
829 	uregs[MIPS32_EF_CP0_STATUS] = regs->cp0_status;
830 	uregs[MIPS32_EF_CP0_CAUSE] = regs->cp0_cause;
831 }
832 #endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
833 
834 #ifdef CONFIG_64BIT
835 void mips_dump_regs64(u64 *uregs, const struct pt_regs *regs)
836 {
837 	unsigned int i;
838 
839 	for (i = MIPS64_EF_R1; i <= MIPS64_EF_R31; i++) {
840 		/* k0/k1 are copied as zero. */
841 		if (i == MIPS64_EF_R26 || i == MIPS64_EF_R27)
842 			uregs[i] = 0;
843 		else
844 			uregs[i] = regs->regs[i - MIPS64_EF_R0];
845 	}
846 
847 	uregs[MIPS64_EF_LO] = regs->lo;
848 	uregs[MIPS64_EF_HI] = regs->hi;
849 	uregs[MIPS64_EF_CP0_EPC] = regs->cp0_epc;
850 	uregs[MIPS64_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
851 	uregs[MIPS64_EF_CP0_STATUS] = regs->cp0_status;
852 	uregs[MIPS64_EF_CP0_CAUSE] = regs->cp0_cause;
853 }
854 #endif /* CONFIG_64BIT */
855