xref: /openbmc/linux/arch/mips/kernel/process.c (revision abe9af53)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000 by Ralf Baechle and others.
7  * Copyright (C) 2005, 2006 by Ralf Baechle (ralf@linux-mips.org)
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  * Copyright (C) 2004 Thiemo Seufer
10  * Copyright (C) 2013  Imagination Technologies Ltd.
11  */
12 #include <linux/errno.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/tick.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/export.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/personality.h>
26 #include <linux/sys.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/kallsyms.h>
30 #include <linux/random.h>
31 #include <linux/prctl.h>
32 #include <linux/nmi.h>
33 #include <linux/cpu.h>
34 
35 #include <asm/abi.h>
36 #include <asm/asm.h>
37 #include <asm/bootinfo.h>
38 #include <asm/cpu.h>
39 #include <asm/dsemul.h>
40 #include <asm/dsp.h>
41 #include <asm/fpu.h>
42 #include <asm/irq.h>
43 #include <asm/mips-cps.h>
44 #include <asm/msa.h>
45 #include <asm/mipsregs.h>
46 #include <asm/processor.h>
47 #include <asm/reg.h>
48 #include <linux/uaccess.h>
49 #include <asm/io.h>
50 #include <asm/elf.h>
51 #include <asm/isadep.h>
52 #include <asm/inst.h>
53 #include <asm/stacktrace.h>
54 #include <asm/irq_regs.h>
55 #include <asm/exec.h>
56 
57 #ifdef CONFIG_HOTPLUG_CPU
58 void arch_cpu_idle_dead(void)
59 {
60 	play_dead();
61 }
62 #endif
63 
64 asmlinkage void ret_from_fork(void);
65 asmlinkage void ret_from_kernel_thread(void);
66 
67 void start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
68 {
69 	unsigned long status;
70 
71 	/* New thread loses kernel privileges. */
72 	status = regs->cp0_status & ~(ST0_CU0|ST0_CU1|ST0_CU2|ST0_FR|KU_MASK);
73 	status |= KU_USER;
74 	regs->cp0_status = status;
75 	lose_fpu(0);
76 	clear_thread_flag(TIF_MSA_CTX_LIVE);
77 	clear_used_math();
78 #ifdef CONFIG_MIPS_FP_SUPPORT
79 	atomic_set(&current->thread.bd_emu_frame, BD_EMUFRAME_NONE);
80 #endif
81 	init_dsp();
82 	regs->cp0_epc = pc;
83 	regs->regs[29] = sp;
84 }
85 
86 void exit_thread(struct task_struct *tsk)
87 {
88 	/*
89 	 * User threads may have allocated a delay slot emulation frame.
90 	 * If so, clean up that allocation.
91 	 */
92 	if (!(current->flags & PF_KTHREAD))
93 		dsemul_thread_cleanup(tsk);
94 }
95 
96 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
97 {
98 	/*
99 	 * Save any process state which is live in hardware registers to the
100 	 * parent context prior to duplication. This prevents the new child
101 	 * state becoming stale if the parent is preempted before copy_thread()
102 	 * gets a chance to save the parent's live hardware registers to the
103 	 * child context.
104 	 */
105 	preempt_disable();
106 
107 	if (is_msa_enabled())
108 		save_msa(current);
109 	else if (is_fpu_owner())
110 		_save_fp(current);
111 
112 	save_dsp(current);
113 
114 	preempt_enable();
115 
116 	*dst = *src;
117 	return 0;
118 }
119 
120 /*
121  * Copy architecture-specific thread state
122  */
123 int copy_thread(unsigned long clone_flags, unsigned long usp,
124 		unsigned long kthread_arg, struct task_struct *p,
125 		unsigned long tls)
126 {
127 	struct thread_info *ti = task_thread_info(p);
128 	struct pt_regs *childregs, *regs = current_pt_regs();
129 	unsigned long childksp;
130 
131 	childksp = (unsigned long)task_stack_page(p) + THREAD_SIZE - 32;
132 
133 	/* set up new TSS. */
134 	childregs = (struct pt_regs *) childksp - 1;
135 	/*  Put the stack after the struct pt_regs.  */
136 	childksp = (unsigned long) childregs;
137 	p->thread.cp0_status = (read_c0_status() & ~(ST0_CU2|ST0_CU1)) | ST0_KERNEL_CUMASK;
138 	if (unlikely(p->flags & PF_KTHREAD)) {
139 		/* kernel thread */
140 		unsigned long status = p->thread.cp0_status;
141 		memset(childregs, 0, sizeof(struct pt_regs));
142 		ti->addr_limit = KERNEL_DS;
143 		p->thread.reg16 = usp; /* fn */
144 		p->thread.reg17 = kthread_arg;
145 		p->thread.reg29 = childksp;
146 		p->thread.reg31 = (unsigned long) ret_from_kernel_thread;
147 #if defined(CONFIG_CPU_R3000) || defined(CONFIG_CPU_TX39XX)
148 		status = (status & ~(ST0_KUP | ST0_IEP | ST0_IEC)) |
149 			 ((status & (ST0_KUC | ST0_IEC)) << 2);
150 #else
151 		status |= ST0_EXL;
152 #endif
153 		childregs->cp0_status = status;
154 		return 0;
155 	}
156 
157 	/* user thread */
158 	*childregs = *regs;
159 	childregs->regs[7] = 0; /* Clear error flag */
160 	childregs->regs[2] = 0; /* Child gets zero as return value */
161 	if (usp)
162 		childregs->regs[29] = usp;
163 	ti->addr_limit = USER_DS;
164 
165 	p->thread.reg29 = (unsigned long) childregs;
166 	p->thread.reg31 = (unsigned long) ret_from_fork;
167 
168 	/*
169 	 * New tasks lose permission to use the fpu. This accelerates context
170 	 * switching for most programs since they don't use the fpu.
171 	 */
172 	childregs->cp0_status &= ~(ST0_CU2|ST0_CU1);
173 
174 	clear_tsk_thread_flag(p, TIF_USEDFPU);
175 	clear_tsk_thread_flag(p, TIF_USEDMSA);
176 	clear_tsk_thread_flag(p, TIF_MSA_CTX_LIVE);
177 
178 #ifdef CONFIG_MIPS_MT_FPAFF
179 	clear_tsk_thread_flag(p, TIF_FPUBOUND);
180 #endif /* CONFIG_MIPS_MT_FPAFF */
181 
182 #ifdef CONFIG_MIPS_FP_SUPPORT
183 	atomic_set(&p->thread.bd_emu_frame, BD_EMUFRAME_NONE);
184 #endif
185 
186 	if (clone_flags & CLONE_SETTLS)
187 		ti->tp_value = tls;
188 
189 	return 0;
190 }
191 
192 #ifdef CONFIG_STACKPROTECTOR
193 #include <linux/stackprotector.h>
194 unsigned long __stack_chk_guard __read_mostly;
195 EXPORT_SYMBOL(__stack_chk_guard);
196 #endif
197 
198 struct mips_frame_info {
199 	void		*func;
200 	unsigned long	func_size;
201 	int		frame_size;
202 	int		pc_offset;
203 };
204 
205 #define J_TARGET(pc,target)	\
206 		(((unsigned long)(pc) & 0xf0000000) | ((target) << 2))
207 
208 static inline int is_ra_save_ins(union mips_instruction *ip, int *poff)
209 {
210 #ifdef CONFIG_CPU_MICROMIPS
211 	/*
212 	 * swsp ra,offset
213 	 * swm16 reglist,offset(sp)
214 	 * swm32 reglist,offset(sp)
215 	 * sw32 ra,offset(sp)
216 	 * jradiussp - NOT SUPPORTED
217 	 *
218 	 * microMIPS is way more fun...
219 	 */
220 	if (mm_insn_16bit(ip->word >> 16)) {
221 		switch (ip->mm16_r5_format.opcode) {
222 		case mm_swsp16_op:
223 			if (ip->mm16_r5_format.rt != 31)
224 				return 0;
225 
226 			*poff = ip->mm16_r5_format.imm;
227 			*poff = (*poff << 2) / sizeof(ulong);
228 			return 1;
229 
230 		case mm_pool16c_op:
231 			switch (ip->mm16_m_format.func) {
232 			case mm_swm16_op:
233 				*poff = ip->mm16_m_format.imm;
234 				*poff += 1 + ip->mm16_m_format.rlist;
235 				*poff = (*poff << 2) / sizeof(ulong);
236 				return 1;
237 
238 			default:
239 				return 0;
240 			}
241 
242 		default:
243 			return 0;
244 		}
245 	}
246 
247 	switch (ip->i_format.opcode) {
248 	case mm_sw32_op:
249 		if (ip->i_format.rs != 29)
250 			return 0;
251 		if (ip->i_format.rt != 31)
252 			return 0;
253 
254 		*poff = ip->i_format.simmediate / sizeof(ulong);
255 		return 1;
256 
257 	case mm_pool32b_op:
258 		switch (ip->mm_m_format.func) {
259 		case mm_swm32_func:
260 			if (ip->mm_m_format.rd < 0x10)
261 				return 0;
262 			if (ip->mm_m_format.base != 29)
263 				return 0;
264 
265 			*poff = ip->mm_m_format.simmediate;
266 			*poff += (ip->mm_m_format.rd & 0xf) * sizeof(u32);
267 			*poff /= sizeof(ulong);
268 			return 1;
269 		default:
270 			return 0;
271 		}
272 
273 	default:
274 		return 0;
275 	}
276 #else
277 	/* sw / sd $ra, offset($sp) */
278 	if ((ip->i_format.opcode == sw_op || ip->i_format.opcode == sd_op) &&
279 		ip->i_format.rs == 29 && ip->i_format.rt == 31) {
280 		*poff = ip->i_format.simmediate / sizeof(ulong);
281 		return 1;
282 	}
283 #ifdef CONFIG_CPU_LOONGSON64
284 	if ((ip->loongson3_lswc2_format.opcode == swc2_op) &&
285 		      (ip->loongson3_lswc2_format.ls == 1) &&
286 		      (ip->loongson3_lswc2_format.fr == 0) &&
287 		      (ip->loongson3_lswc2_format.base == 29)) {
288 		if (ip->loongson3_lswc2_format.rt == 31) {
289 			*poff = ip->loongson3_lswc2_format.offset << 1;
290 			return 1;
291 		}
292 		if (ip->loongson3_lswc2_format.rq == 31) {
293 			*poff = (ip->loongson3_lswc2_format.offset << 1) + 1;
294 			return 1;
295 		}
296 	}
297 #endif
298 	return 0;
299 #endif
300 }
301 
302 static inline int is_jump_ins(union mips_instruction *ip)
303 {
304 #ifdef CONFIG_CPU_MICROMIPS
305 	/*
306 	 * jr16,jrc,jalr16,jalr16
307 	 * jal
308 	 * jalr/jr,jalr.hb/jr.hb,jalrs,jalrs.hb
309 	 * jraddiusp - NOT SUPPORTED
310 	 *
311 	 * microMIPS is kind of more fun...
312 	 */
313 	if (mm_insn_16bit(ip->word >> 16)) {
314 		if ((ip->mm16_r5_format.opcode == mm_pool16c_op &&
315 		    (ip->mm16_r5_format.rt & mm_jr16_op) == mm_jr16_op))
316 			return 1;
317 		return 0;
318 	}
319 
320 	if (ip->j_format.opcode == mm_j32_op)
321 		return 1;
322 	if (ip->j_format.opcode == mm_jal32_op)
323 		return 1;
324 	if (ip->r_format.opcode != mm_pool32a_op ||
325 			ip->r_format.func != mm_pool32axf_op)
326 		return 0;
327 	return ((ip->u_format.uimmediate >> 6) & mm_jalr_op) == mm_jalr_op;
328 #else
329 	if (ip->j_format.opcode == j_op)
330 		return 1;
331 	if (ip->j_format.opcode == jal_op)
332 		return 1;
333 	if (ip->r_format.opcode != spec_op)
334 		return 0;
335 	return ip->r_format.func == jalr_op || ip->r_format.func == jr_op;
336 #endif
337 }
338 
339 static inline int is_sp_move_ins(union mips_instruction *ip, int *frame_size)
340 {
341 #ifdef CONFIG_CPU_MICROMIPS
342 	unsigned short tmp;
343 
344 	/*
345 	 * addiusp -imm
346 	 * addius5 sp,-imm
347 	 * addiu32 sp,sp,-imm
348 	 * jradiussp - NOT SUPPORTED
349 	 *
350 	 * microMIPS is not more fun...
351 	 */
352 	if (mm_insn_16bit(ip->word >> 16)) {
353 		if (ip->mm16_r3_format.opcode == mm_pool16d_op &&
354 		    ip->mm16_r3_format.simmediate & mm_addiusp_func) {
355 			tmp = ip->mm_b0_format.simmediate >> 1;
356 			tmp = ((tmp & 0x1ff) ^ 0x100) - 0x100;
357 			if ((tmp + 2) < 4) /* 0x0,0x1,0x1fe,0x1ff are special */
358 				tmp ^= 0x100;
359 			*frame_size = -(signed short)(tmp << 2);
360 			return 1;
361 		}
362 		if (ip->mm16_r5_format.opcode == mm_pool16d_op &&
363 		    ip->mm16_r5_format.rt == 29) {
364 			tmp = ip->mm16_r5_format.imm >> 1;
365 			*frame_size = -(signed short)(tmp & 0xf);
366 			return 1;
367 		}
368 		return 0;
369 	}
370 
371 	if (ip->mm_i_format.opcode == mm_addiu32_op &&
372 	    ip->mm_i_format.rt == 29 && ip->mm_i_format.rs == 29) {
373 		*frame_size = -ip->i_format.simmediate;
374 		return 1;
375 	}
376 #else
377 	/* addiu/daddiu sp,sp,-imm */
378 	if (ip->i_format.rs != 29 || ip->i_format.rt != 29)
379 		return 0;
380 
381 	if (ip->i_format.opcode == addiu_op ||
382 	    ip->i_format.opcode == daddiu_op) {
383 		*frame_size = -ip->i_format.simmediate;
384 		return 1;
385 	}
386 #endif
387 	return 0;
388 }
389 
390 static int get_frame_info(struct mips_frame_info *info)
391 {
392 	bool is_mmips = IS_ENABLED(CONFIG_CPU_MICROMIPS);
393 	union mips_instruction insn, *ip;
394 	const unsigned int max_insns = 128;
395 	unsigned int last_insn_size = 0;
396 	unsigned int i;
397 	bool saw_jump = false;
398 
399 	info->pc_offset = -1;
400 	info->frame_size = 0;
401 
402 	ip = (void *)msk_isa16_mode((ulong)info->func);
403 	if (!ip)
404 		goto err;
405 
406 	for (i = 0; i < max_insns; i++) {
407 		ip = (void *)ip + last_insn_size;
408 
409 		if (is_mmips && mm_insn_16bit(ip->halfword[0])) {
410 			insn.word = ip->halfword[0] << 16;
411 			last_insn_size = 2;
412 		} else if (is_mmips) {
413 			insn.word = ip->halfword[0] << 16 | ip->halfword[1];
414 			last_insn_size = 4;
415 		} else {
416 			insn.word = ip->word;
417 			last_insn_size = 4;
418 		}
419 
420 		if (!info->frame_size) {
421 			is_sp_move_ins(&insn, &info->frame_size);
422 			continue;
423 		} else if (!saw_jump && is_jump_ins(ip)) {
424 			/*
425 			 * If we see a jump instruction, we are finished
426 			 * with the frame save.
427 			 *
428 			 * Some functions can have a shortcut return at
429 			 * the beginning of the function, so don't start
430 			 * looking for jump instruction until we see the
431 			 * frame setup.
432 			 *
433 			 * The RA save instruction can get put into the
434 			 * delay slot of the jump instruction, so look
435 			 * at the next instruction, too.
436 			 */
437 			saw_jump = true;
438 			continue;
439 		}
440 		if (info->pc_offset == -1 &&
441 		    is_ra_save_ins(&insn, &info->pc_offset))
442 			break;
443 		if (saw_jump)
444 			break;
445 	}
446 	if (info->frame_size && info->pc_offset >= 0) /* nested */
447 		return 0;
448 	if (info->pc_offset < 0) /* leaf */
449 		return 1;
450 	/* prologue seems bogus... */
451 err:
452 	return -1;
453 }
454 
455 static struct mips_frame_info schedule_mfi __read_mostly;
456 
457 #ifdef CONFIG_KALLSYMS
458 static unsigned long get___schedule_addr(void)
459 {
460 	return kallsyms_lookup_name("__schedule");
461 }
462 #else
463 static unsigned long get___schedule_addr(void)
464 {
465 	union mips_instruction *ip = (void *)schedule;
466 	int max_insns = 8;
467 	int i;
468 
469 	for (i = 0; i < max_insns; i++, ip++) {
470 		if (ip->j_format.opcode == j_op)
471 			return J_TARGET(ip, ip->j_format.target);
472 	}
473 	return 0;
474 }
475 #endif
476 
477 static int __init frame_info_init(void)
478 {
479 	unsigned long size = 0;
480 #ifdef CONFIG_KALLSYMS
481 	unsigned long ofs;
482 #endif
483 	unsigned long addr;
484 
485 	addr = get___schedule_addr();
486 	if (!addr)
487 		addr = (unsigned long)schedule;
488 
489 #ifdef CONFIG_KALLSYMS
490 	kallsyms_lookup_size_offset(addr, &size, &ofs);
491 #endif
492 	schedule_mfi.func = (void *)addr;
493 	schedule_mfi.func_size = size;
494 
495 	get_frame_info(&schedule_mfi);
496 
497 	/*
498 	 * Without schedule() frame info, result given by
499 	 * thread_saved_pc() and get_wchan() are not reliable.
500 	 */
501 	if (schedule_mfi.pc_offset < 0)
502 		printk("Can't analyze schedule() prologue at %p\n", schedule);
503 
504 	return 0;
505 }
506 
507 arch_initcall(frame_info_init);
508 
509 /*
510  * Return saved PC of a blocked thread.
511  */
512 static unsigned long thread_saved_pc(struct task_struct *tsk)
513 {
514 	struct thread_struct *t = &tsk->thread;
515 
516 	/* New born processes are a special case */
517 	if (t->reg31 == (unsigned long) ret_from_fork)
518 		return t->reg31;
519 	if (schedule_mfi.pc_offset < 0)
520 		return 0;
521 	return ((unsigned long *)t->reg29)[schedule_mfi.pc_offset];
522 }
523 
524 
525 #ifdef CONFIG_KALLSYMS
526 /* generic stack unwinding function */
527 unsigned long notrace unwind_stack_by_address(unsigned long stack_page,
528 					      unsigned long *sp,
529 					      unsigned long pc,
530 					      unsigned long *ra)
531 {
532 	unsigned long low, high, irq_stack_high;
533 	struct mips_frame_info info;
534 	unsigned long size, ofs;
535 	struct pt_regs *regs;
536 	int leaf;
537 
538 	if (!stack_page)
539 		return 0;
540 
541 	/*
542 	 * IRQ stacks start at IRQ_STACK_START
543 	 * task stacks at THREAD_SIZE - 32
544 	 */
545 	low = stack_page;
546 	if (!preemptible() && on_irq_stack(raw_smp_processor_id(), *sp)) {
547 		high = stack_page + IRQ_STACK_START;
548 		irq_stack_high = high;
549 	} else {
550 		high = stack_page + THREAD_SIZE - 32;
551 		irq_stack_high = 0;
552 	}
553 
554 	/*
555 	 * If we reached the top of the interrupt stack, start unwinding
556 	 * the interrupted task stack.
557 	 */
558 	if (unlikely(*sp == irq_stack_high)) {
559 		unsigned long task_sp = *(unsigned long *)*sp;
560 
561 		/*
562 		 * Check that the pointer saved in the IRQ stack head points to
563 		 * something within the stack of the current task
564 		 */
565 		if (!object_is_on_stack((void *)task_sp))
566 			return 0;
567 
568 		/*
569 		 * Follow pointer to tasks kernel stack frame where interrupted
570 		 * state was saved.
571 		 */
572 		regs = (struct pt_regs *)task_sp;
573 		pc = regs->cp0_epc;
574 		if (!user_mode(regs) && __kernel_text_address(pc)) {
575 			*sp = regs->regs[29];
576 			*ra = regs->regs[31];
577 			return pc;
578 		}
579 		return 0;
580 	}
581 	if (!kallsyms_lookup_size_offset(pc, &size, &ofs))
582 		return 0;
583 	/*
584 	 * Return ra if an exception occurred at the first instruction
585 	 */
586 	if (unlikely(ofs == 0)) {
587 		pc = *ra;
588 		*ra = 0;
589 		return pc;
590 	}
591 
592 	info.func = (void *)(pc - ofs);
593 	info.func_size = ofs;	/* analyze from start to ofs */
594 	leaf = get_frame_info(&info);
595 	if (leaf < 0)
596 		return 0;
597 
598 	if (*sp < low || *sp + info.frame_size > high)
599 		return 0;
600 
601 	if (leaf)
602 		/*
603 		 * For some extreme cases, get_frame_info() can
604 		 * consider wrongly a nested function as a leaf
605 		 * one. In that cases avoid to return always the
606 		 * same value.
607 		 */
608 		pc = pc != *ra ? *ra : 0;
609 	else
610 		pc = ((unsigned long *)(*sp))[info.pc_offset];
611 
612 	*sp += info.frame_size;
613 	*ra = 0;
614 	return __kernel_text_address(pc) ? pc : 0;
615 }
616 EXPORT_SYMBOL(unwind_stack_by_address);
617 
618 /* used by show_backtrace() */
619 unsigned long unwind_stack(struct task_struct *task, unsigned long *sp,
620 			   unsigned long pc, unsigned long *ra)
621 {
622 	unsigned long stack_page = 0;
623 	int cpu;
624 
625 	for_each_possible_cpu(cpu) {
626 		if (on_irq_stack(cpu, *sp)) {
627 			stack_page = (unsigned long)irq_stack[cpu];
628 			break;
629 		}
630 	}
631 
632 	if (!stack_page)
633 		stack_page = (unsigned long)task_stack_page(task);
634 
635 	return unwind_stack_by_address(stack_page, sp, pc, ra);
636 }
637 #endif
638 
639 /*
640  * get_wchan - a maintenance nightmare^W^Wpain in the ass ...
641  */
642 unsigned long get_wchan(struct task_struct *task)
643 {
644 	unsigned long pc = 0;
645 #ifdef CONFIG_KALLSYMS
646 	unsigned long sp;
647 	unsigned long ra = 0;
648 #endif
649 
650 	if (!task || task == current || task->state == TASK_RUNNING)
651 		goto out;
652 	if (!task_stack_page(task))
653 		goto out;
654 
655 	pc = thread_saved_pc(task);
656 
657 #ifdef CONFIG_KALLSYMS
658 	sp = task->thread.reg29 + schedule_mfi.frame_size;
659 
660 	while (in_sched_functions(pc))
661 		pc = unwind_stack(task, &sp, pc, &ra);
662 #endif
663 
664 out:
665 	return pc;
666 }
667 
668 unsigned long mips_stack_top(void)
669 {
670 	unsigned long top = TASK_SIZE & PAGE_MASK;
671 
672 	if (IS_ENABLED(CONFIG_MIPS_FP_SUPPORT)) {
673 		/* One page for branch delay slot "emulation" */
674 		top -= PAGE_SIZE;
675 	}
676 
677 	/* Space for the VDSO, data page & GIC user page */
678 	top -= PAGE_ALIGN(current->thread.abi->vdso->size);
679 	top -= PAGE_SIZE;
680 	top -= mips_gic_present() ? PAGE_SIZE : 0;
681 
682 	/* Space for cache colour alignment */
683 	if (cpu_has_dc_aliases)
684 		top -= shm_align_mask + 1;
685 
686 	/* Space to randomize the VDSO base */
687 	if (current->flags & PF_RANDOMIZE)
688 		top -= VDSO_RANDOMIZE_SIZE;
689 
690 	return top;
691 }
692 
693 /*
694  * Don't forget that the stack pointer must be aligned on a 8 bytes
695  * boundary for 32-bits ABI and 16 bytes for 64-bits ABI.
696  */
697 unsigned long arch_align_stack(unsigned long sp)
698 {
699 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
700 		sp -= get_random_int() & ~PAGE_MASK;
701 
702 	return sp & ALMASK;
703 }
704 
705 static DEFINE_PER_CPU(call_single_data_t, backtrace_csd);
706 static struct cpumask backtrace_csd_busy;
707 
708 static void handle_backtrace(void *info)
709 {
710 	nmi_cpu_backtrace(get_irq_regs());
711 	cpumask_clear_cpu(smp_processor_id(), &backtrace_csd_busy);
712 }
713 
714 static void raise_backtrace(cpumask_t *mask)
715 {
716 	call_single_data_t *csd;
717 	int cpu;
718 
719 	for_each_cpu(cpu, mask) {
720 		/*
721 		 * If we previously sent an IPI to the target CPU & it hasn't
722 		 * cleared its bit in the busy cpumask then it didn't handle
723 		 * our previous IPI & it's not safe for us to reuse the
724 		 * call_single_data_t.
725 		 */
726 		if (cpumask_test_and_set_cpu(cpu, &backtrace_csd_busy)) {
727 			pr_warn("Unable to send backtrace IPI to CPU%u - perhaps it hung?\n",
728 				cpu);
729 			continue;
730 		}
731 
732 		csd = &per_cpu(backtrace_csd, cpu);
733 		csd->func = handle_backtrace;
734 		smp_call_function_single_async(cpu, csd);
735 	}
736 }
737 
738 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
739 {
740 	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_backtrace);
741 }
742 
743 int mips_get_process_fp_mode(struct task_struct *task)
744 {
745 	int value = 0;
746 
747 	if (!test_tsk_thread_flag(task, TIF_32BIT_FPREGS))
748 		value |= PR_FP_MODE_FR;
749 	if (test_tsk_thread_flag(task, TIF_HYBRID_FPREGS))
750 		value |= PR_FP_MODE_FRE;
751 
752 	return value;
753 }
754 
755 static long prepare_for_fp_mode_switch(void *unused)
756 {
757 	/*
758 	 * This is icky, but we use this to simply ensure that all CPUs have
759 	 * context switched, regardless of whether they were previously running
760 	 * kernel or user code. This ensures that no CPU that a mode-switching
761 	 * program may execute on keeps its FPU enabled (& in the old mode)
762 	 * throughout the mode switch.
763 	 */
764 	return 0;
765 }
766 
767 int mips_set_process_fp_mode(struct task_struct *task, unsigned int value)
768 {
769 	const unsigned int known_bits = PR_FP_MODE_FR | PR_FP_MODE_FRE;
770 	struct task_struct *t;
771 	struct cpumask process_cpus;
772 	int cpu;
773 
774 	/* If nothing to change, return right away, successfully.  */
775 	if (value == mips_get_process_fp_mode(task))
776 		return 0;
777 
778 	/* Only accept a mode change if 64-bit FP enabled for o32.  */
779 	if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
780 		return -EOPNOTSUPP;
781 
782 	/* And only for o32 tasks.  */
783 	if (IS_ENABLED(CONFIG_64BIT) && !test_thread_flag(TIF_32BIT_REGS))
784 		return -EOPNOTSUPP;
785 
786 	/* Check the value is valid */
787 	if (value & ~known_bits)
788 		return -EOPNOTSUPP;
789 
790 	/* Setting FRE without FR is not supported.  */
791 	if ((value & (PR_FP_MODE_FR | PR_FP_MODE_FRE)) == PR_FP_MODE_FRE)
792 		return -EOPNOTSUPP;
793 
794 	/* Avoid inadvertently triggering emulation */
795 	if ((value & PR_FP_MODE_FR) && raw_cpu_has_fpu &&
796 	    !(raw_current_cpu_data.fpu_id & MIPS_FPIR_F64))
797 		return -EOPNOTSUPP;
798 	if ((value & PR_FP_MODE_FRE) && raw_cpu_has_fpu && !cpu_has_fre)
799 		return -EOPNOTSUPP;
800 
801 	/* FR = 0 not supported in MIPS R6 */
802 	if (!(value & PR_FP_MODE_FR) && raw_cpu_has_fpu && cpu_has_mips_r6)
803 		return -EOPNOTSUPP;
804 
805 	/* Indicate the new FP mode in each thread */
806 	for_each_thread(task, t) {
807 		/* Update desired FP register width */
808 		if (value & PR_FP_MODE_FR) {
809 			clear_tsk_thread_flag(t, TIF_32BIT_FPREGS);
810 		} else {
811 			set_tsk_thread_flag(t, TIF_32BIT_FPREGS);
812 			clear_tsk_thread_flag(t, TIF_MSA_CTX_LIVE);
813 		}
814 
815 		/* Update desired FP single layout */
816 		if (value & PR_FP_MODE_FRE)
817 			set_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
818 		else
819 			clear_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
820 	}
821 
822 	/*
823 	 * We need to ensure that all threads in the process have switched mode
824 	 * before returning, in order to allow userland to not worry about
825 	 * races. We can do this by forcing all CPUs that any thread in the
826 	 * process may be running on to schedule something else - in this case
827 	 * prepare_for_fp_mode_switch().
828 	 *
829 	 * We begin by generating a mask of all CPUs that any thread in the
830 	 * process may be running on.
831 	 */
832 	cpumask_clear(&process_cpus);
833 	for_each_thread(task, t)
834 		cpumask_set_cpu(task_cpu(t), &process_cpus);
835 
836 	/*
837 	 * Now we schedule prepare_for_fp_mode_switch() on each of those CPUs.
838 	 *
839 	 * The CPUs may have rescheduled already since we switched mode or
840 	 * generated the cpumask, but that doesn't matter. If the task in this
841 	 * process is scheduled out then our scheduling
842 	 * prepare_for_fp_mode_switch() will simply be redundant. If it's
843 	 * scheduled in then it will already have picked up the new FP mode
844 	 * whilst doing so.
845 	 */
846 	get_online_cpus();
847 	for_each_cpu_and(cpu, &process_cpus, cpu_online_mask)
848 		work_on_cpu(cpu, prepare_for_fp_mode_switch, NULL);
849 	put_online_cpus();
850 
851 	return 0;
852 }
853 
854 #if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
855 void mips_dump_regs32(u32 *uregs, const struct pt_regs *regs)
856 {
857 	unsigned int i;
858 
859 	for (i = MIPS32_EF_R1; i <= MIPS32_EF_R31; i++) {
860 		/* k0/k1 are copied as zero. */
861 		if (i == MIPS32_EF_R26 || i == MIPS32_EF_R27)
862 			uregs[i] = 0;
863 		else
864 			uregs[i] = regs->regs[i - MIPS32_EF_R0];
865 	}
866 
867 	uregs[MIPS32_EF_LO] = regs->lo;
868 	uregs[MIPS32_EF_HI] = regs->hi;
869 	uregs[MIPS32_EF_CP0_EPC] = regs->cp0_epc;
870 	uregs[MIPS32_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
871 	uregs[MIPS32_EF_CP0_STATUS] = regs->cp0_status;
872 	uregs[MIPS32_EF_CP0_CAUSE] = regs->cp0_cause;
873 }
874 #endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
875 
876 #ifdef CONFIG_64BIT
877 void mips_dump_regs64(u64 *uregs, const struct pt_regs *regs)
878 {
879 	unsigned int i;
880 
881 	for (i = MIPS64_EF_R1; i <= MIPS64_EF_R31; i++) {
882 		/* k0/k1 are copied as zero. */
883 		if (i == MIPS64_EF_R26 || i == MIPS64_EF_R27)
884 			uregs[i] = 0;
885 		else
886 			uregs[i] = regs->regs[i - MIPS64_EF_R0];
887 	}
888 
889 	uregs[MIPS64_EF_LO] = regs->lo;
890 	uregs[MIPS64_EF_HI] = regs->hi;
891 	uregs[MIPS64_EF_CP0_EPC] = regs->cp0_epc;
892 	uregs[MIPS64_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
893 	uregs[MIPS64_EF_CP0_STATUS] = regs->cp0_status;
894 	uregs[MIPS64_EF_CP0_CAUSE] = regs->cp0_cause;
895 }
896 #endif /* CONFIG_64BIT */
897