xref: /openbmc/linux/arch/mips/kernel/process.c (revision a1c7c49c2091926962f8c1c866d386febffec5d8)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000 by Ralf Baechle and others.
7  * Copyright (C) 2005, 2006 by Ralf Baechle (ralf@linux-mips.org)
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  * Copyright (C) 2004 Thiemo Seufer
10  * Copyright (C) 2013  Imagination Technologies Ltd.
11  */
12 #include <linux/cpu.h>
13 #include <linux/errno.h>
14 #include <linux/init.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
17 #include <linux/nmi.h>
18 #include <linux/personality.h>
19 #include <linux/prctl.h>
20 #include <linux/random.h>
21 #include <linux/sched.h>
22 #include <linux/sched/debug.h>
23 #include <linux/sched/task_stack.h>
24 
25 #include <asm/abi.h>
26 #include <asm/asm.h>
27 #include <asm/dsemul.h>
28 #include <asm/dsp.h>
29 #include <asm/exec.h>
30 #include <asm/fpu.h>
31 #include <asm/inst.h>
32 #include <asm/irq.h>
33 #include <asm/irq_regs.h>
34 #include <asm/isadep.h>
35 #include <asm/msa.h>
36 #include <asm/mips-cps.h>
37 #include <asm/mipsregs.h>
38 #include <asm/processor.h>
39 #include <asm/reg.h>
40 #include <asm/stacktrace.h>
41 
42 #ifdef CONFIG_HOTPLUG_CPU
43 void arch_cpu_idle_dead(void)
44 {
45 	play_dead();
46 }
47 #endif
48 
49 asmlinkage void ret_from_fork(void);
50 asmlinkage void ret_from_kernel_thread(void);
51 
52 void start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
53 {
54 	unsigned long status;
55 
56 	/* New thread loses kernel privileges. */
57 	status = regs->cp0_status & ~(ST0_CU0|ST0_CU1|ST0_CU2|ST0_FR|KU_MASK);
58 	status |= KU_USER;
59 	regs->cp0_status = status;
60 	lose_fpu(0);
61 	clear_thread_flag(TIF_MSA_CTX_LIVE);
62 	clear_used_math();
63 #ifdef CONFIG_MIPS_FP_SUPPORT
64 	atomic_set(&current->thread.bd_emu_frame, BD_EMUFRAME_NONE);
65 #endif
66 	init_dsp();
67 	regs->cp0_epc = pc;
68 	regs->regs[29] = sp;
69 }
70 
71 void exit_thread(struct task_struct *tsk)
72 {
73 	/*
74 	 * User threads may have allocated a delay slot emulation frame.
75 	 * If so, clean up that allocation.
76 	 */
77 	if (!(current->flags & PF_KTHREAD))
78 		dsemul_thread_cleanup(tsk);
79 }
80 
81 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
82 {
83 	/*
84 	 * Save any process state which is live in hardware registers to the
85 	 * parent context prior to duplication. This prevents the new child
86 	 * state becoming stale if the parent is preempted before copy_thread()
87 	 * gets a chance to save the parent's live hardware registers to the
88 	 * child context.
89 	 */
90 	preempt_disable();
91 
92 	if (is_msa_enabled())
93 		save_msa(current);
94 	else if (is_fpu_owner())
95 		_save_fp(current);
96 
97 	save_dsp(current);
98 
99 	preempt_enable();
100 
101 	*dst = *src;
102 	return 0;
103 }
104 
105 /*
106  * Copy architecture-specific thread state
107  */
108 int copy_thread(unsigned long clone_flags, unsigned long usp,
109 		unsigned long kthread_arg, struct task_struct *p,
110 		unsigned long tls)
111 {
112 	struct thread_info *ti = task_thread_info(p);
113 	struct pt_regs *childregs, *regs = current_pt_regs();
114 	unsigned long childksp;
115 
116 	childksp = (unsigned long)task_stack_page(p) + THREAD_SIZE - 32;
117 
118 	/* set up new TSS. */
119 	childregs = (struct pt_regs *) childksp - 1;
120 	/*  Put the stack after the struct pt_regs.  */
121 	childksp = (unsigned long) childregs;
122 	p->thread.cp0_status = (read_c0_status() & ~(ST0_CU2|ST0_CU1)) | ST0_KERNEL_CUMASK;
123 	if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) {
124 		/* kernel thread */
125 		unsigned long status = p->thread.cp0_status;
126 		memset(childregs, 0, sizeof(struct pt_regs));
127 		p->thread.reg16 = usp; /* fn */
128 		p->thread.reg17 = kthread_arg;
129 		p->thread.reg29 = childksp;
130 		p->thread.reg31 = (unsigned long) ret_from_kernel_thread;
131 #if defined(CONFIG_CPU_R3000) || defined(CONFIG_CPU_TX39XX)
132 		status = (status & ~(ST0_KUP | ST0_IEP | ST0_IEC)) |
133 			 ((status & (ST0_KUC | ST0_IEC)) << 2);
134 #else
135 		status |= ST0_EXL;
136 #endif
137 		childregs->cp0_status = status;
138 		return 0;
139 	}
140 
141 	/* user thread */
142 	*childregs = *regs;
143 	childregs->regs[7] = 0; /* Clear error flag */
144 	childregs->regs[2] = 0; /* Child gets zero as return value */
145 	if (usp)
146 		childregs->regs[29] = usp;
147 
148 	p->thread.reg29 = (unsigned long) childregs;
149 	p->thread.reg31 = (unsigned long) ret_from_fork;
150 
151 	/*
152 	 * New tasks lose permission to use the fpu. This accelerates context
153 	 * switching for most programs since they don't use the fpu.
154 	 */
155 	childregs->cp0_status &= ~(ST0_CU2|ST0_CU1);
156 
157 	clear_tsk_thread_flag(p, TIF_USEDFPU);
158 	clear_tsk_thread_flag(p, TIF_USEDMSA);
159 	clear_tsk_thread_flag(p, TIF_MSA_CTX_LIVE);
160 
161 #ifdef CONFIG_MIPS_MT_FPAFF
162 	clear_tsk_thread_flag(p, TIF_FPUBOUND);
163 #endif /* CONFIG_MIPS_MT_FPAFF */
164 
165 #ifdef CONFIG_MIPS_FP_SUPPORT
166 	atomic_set(&p->thread.bd_emu_frame, BD_EMUFRAME_NONE);
167 #endif
168 
169 	if (clone_flags & CLONE_SETTLS)
170 		ti->tp_value = tls;
171 
172 	return 0;
173 }
174 
175 #ifdef CONFIG_STACKPROTECTOR
176 #include <linux/stackprotector.h>
177 unsigned long __stack_chk_guard __read_mostly;
178 EXPORT_SYMBOL(__stack_chk_guard);
179 #endif
180 
181 struct mips_frame_info {
182 	void		*func;
183 	unsigned long	func_size;
184 	int		frame_size;
185 	int		pc_offset;
186 };
187 
188 #define J_TARGET(pc,target)	\
189 		(((unsigned long)(pc) & 0xf0000000) | ((target) << 2))
190 
191 static inline int is_jr_ra_ins(union mips_instruction *ip)
192 {
193 #ifdef CONFIG_CPU_MICROMIPS
194 	/*
195 	 * jr16 ra
196 	 * jr ra
197 	 */
198 	if (mm_insn_16bit(ip->word >> 16)) {
199 		if (ip->mm16_r5_format.opcode == mm_pool16c_op &&
200 		    ip->mm16_r5_format.rt == mm_jr16_op &&
201 		    ip->mm16_r5_format.imm == 31)
202 			return 1;
203 		return 0;
204 	}
205 
206 	if (ip->r_format.opcode == mm_pool32a_op &&
207 	    ip->r_format.func == mm_pool32axf_op &&
208 	    ((ip->u_format.uimmediate >> 6) & GENMASK(9, 0)) == mm_jalr_op &&
209 	    ip->r_format.rt == 31)
210 		return 1;
211 	return 0;
212 #else
213 	if (ip->r_format.opcode == spec_op &&
214 	    ip->r_format.func == jr_op &&
215 	    ip->r_format.rs == 31)
216 		return 1;
217 	return 0;
218 #endif
219 }
220 
221 static inline int is_ra_save_ins(union mips_instruction *ip, int *poff)
222 {
223 #ifdef CONFIG_CPU_MICROMIPS
224 	/*
225 	 * swsp ra,offset
226 	 * swm16 reglist,offset(sp)
227 	 * swm32 reglist,offset(sp)
228 	 * sw32 ra,offset(sp)
229 	 * jradiussp - NOT SUPPORTED
230 	 *
231 	 * microMIPS is way more fun...
232 	 */
233 	if (mm_insn_16bit(ip->word >> 16)) {
234 		switch (ip->mm16_r5_format.opcode) {
235 		case mm_swsp16_op:
236 			if (ip->mm16_r5_format.rt != 31)
237 				return 0;
238 
239 			*poff = ip->mm16_r5_format.imm;
240 			*poff = (*poff << 2) / sizeof(ulong);
241 			return 1;
242 
243 		case mm_pool16c_op:
244 			switch (ip->mm16_m_format.func) {
245 			case mm_swm16_op:
246 				*poff = ip->mm16_m_format.imm;
247 				*poff += 1 + ip->mm16_m_format.rlist;
248 				*poff = (*poff << 2) / sizeof(ulong);
249 				return 1;
250 
251 			default:
252 				return 0;
253 			}
254 
255 		default:
256 			return 0;
257 		}
258 	}
259 
260 	switch (ip->i_format.opcode) {
261 	case mm_sw32_op:
262 		if (ip->i_format.rs != 29)
263 			return 0;
264 		if (ip->i_format.rt != 31)
265 			return 0;
266 
267 		*poff = ip->i_format.simmediate / sizeof(ulong);
268 		return 1;
269 
270 	case mm_pool32b_op:
271 		switch (ip->mm_m_format.func) {
272 		case mm_swm32_func:
273 			if (ip->mm_m_format.rd < 0x10)
274 				return 0;
275 			if (ip->mm_m_format.base != 29)
276 				return 0;
277 
278 			*poff = ip->mm_m_format.simmediate;
279 			*poff += (ip->mm_m_format.rd & 0xf) * sizeof(u32);
280 			*poff /= sizeof(ulong);
281 			return 1;
282 		default:
283 			return 0;
284 		}
285 
286 	default:
287 		return 0;
288 	}
289 #else
290 	/* sw / sd $ra, offset($sp) */
291 	if ((ip->i_format.opcode == sw_op || ip->i_format.opcode == sd_op) &&
292 		ip->i_format.rs == 29 && ip->i_format.rt == 31) {
293 		*poff = ip->i_format.simmediate / sizeof(ulong);
294 		return 1;
295 	}
296 #ifdef CONFIG_CPU_LOONGSON64
297 	if ((ip->loongson3_lswc2_format.opcode == swc2_op) &&
298 		      (ip->loongson3_lswc2_format.ls == 1) &&
299 		      (ip->loongson3_lswc2_format.fr == 0) &&
300 		      (ip->loongson3_lswc2_format.base == 29)) {
301 		if (ip->loongson3_lswc2_format.rt == 31) {
302 			*poff = ip->loongson3_lswc2_format.offset << 1;
303 			return 1;
304 		}
305 		if (ip->loongson3_lswc2_format.rq == 31) {
306 			*poff = (ip->loongson3_lswc2_format.offset << 1) + 1;
307 			return 1;
308 		}
309 	}
310 #endif
311 	return 0;
312 #endif
313 }
314 
315 static inline int is_jump_ins(union mips_instruction *ip)
316 {
317 #ifdef CONFIG_CPU_MICROMIPS
318 	/*
319 	 * jr16,jrc,jalr16,jalr16
320 	 * jal
321 	 * jalr/jr,jalr.hb/jr.hb,jalrs,jalrs.hb
322 	 * jraddiusp - NOT SUPPORTED
323 	 *
324 	 * microMIPS is kind of more fun...
325 	 */
326 	if (mm_insn_16bit(ip->word >> 16)) {
327 		if ((ip->mm16_r5_format.opcode == mm_pool16c_op &&
328 		    (ip->mm16_r5_format.rt & mm_jr16_op) == mm_jr16_op))
329 			return 1;
330 		return 0;
331 	}
332 
333 	if (ip->j_format.opcode == mm_j32_op)
334 		return 1;
335 	if (ip->j_format.opcode == mm_jal32_op)
336 		return 1;
337 	if (ip->r_format.opcode != mm_pool32a_op ||
338 			ip->r_format.func != mm_pool32axf_op)
339 		return 0;
340 	return ((ip->u_format.uimmediate >> 6) & mm_jalr_op) == mm_jalr_op;
341 #else
342 	if (ip->j_format.opcode == j_op)
343 		return 1;
344 	if (ip->j_format.opcode == jal_op)
345 		return 1;
346 	if (ip->r_format.opcode != spec_op)
347 		return 0;
348 	return ip->r_format.func == jalr_op || ip->r_format.func == jr_op;
349 #endif
350 }
351 
352 static inline int is_sp_move_ins(union mips_instruction *ip, int *frame_size)
353 {
354 #ifdef CONFIG_CPU_MICROMIPS
355 	unsigned short tmp;
356 
357 	/*
358 	 * addiusp -imm
359 	 * addius5 sp,-imm
360 	 * addiu32 sp,sp,-imm
361 	 * jradiussp - NOT SUPPORTED
362 	 *
363 	 * microMIPS is not more fun...
364 	 */
365 	if (mm_insn_16bit(ip->word >> 16)) {
366 		if (ip->mm16_r3_format.opcode == mm_pool16d_op &&
367 		    ip->mm16_r3_format.simmediate & mm_addiusp_func) {
368 			tmp = ip->mm_b0_format.simmediate >> 1;
369 			tmp = ((tmp & 0x1ff) ^ 0x100) - 0x100;
370 			if ((tmp + 2) < 4) /* 0x0,0x1,0x1fe,0x1ff are special */
371 				tmp ^= 0x100;
372 			*frame_size = -(signed short)(tmp << 2);
373 			return 1;
374 		}
375 		if (ip->mm16_r5_format.opcode == mm_pool16d_op &&
376 		    ip->mm16_r5_format.rt == 29) {
377 			tmp = ip->mm16_r5_format.imm >> 1;
378 			*frame_size = -(signed short)(tmp & 0xf);
379 			return 1;
380 		}
381 		return 0;
382 	}
383 
384 	if (ip->mm_i_format.opcode == mm_addiu32_op &&
385 	    ip->mm_i_format.rt == 29 && ip->mm_i_format.rs == 29) {
386 		*frame_size = -ip->i_format.simmediate;
387 		return 1;
388 	}
389 #else
390 	/* addiu/daddiu sp,sp,-imm */
391 	if (ip->i_format.rs != 29 || ip->i_format.rt != 29)
392 		return 0;
393 
394 	if (ip->i_format.opcode == addiu_op ||
395 	    ip->i_format.opcode == daddiu_op) {
396 		*frame_size = -ip->i_format.simmediate;
397 		return 1;
398 	}
399 #endif
400 	return 0;
401 }
402 
403 static int get_frame_info(struct mips_frame_info *info)
404 {
405 	bool is_mmips = IS_ENABLED(CONFIG_CPU_MICROMIPS);
406 	union mips_instruction insn, *ip, *ip_end;
407 	unsigned int last_insn_size = 0;
408 	bool saw_jump = false;
409 
410 	info->pc_offset = -1;
411 	info->frame_size = 0;
412 
413 	ip = (void *)msk_isa16_mode((ulong)info->func);
414 	if (!ip)
415 		goto err;
416 
417 	ip_end = (void *)ip + (info->func_size ? info->func_size : 512);
418 
419 	while (ip < ip_end) {
420 		ip = (void *)ip + last_insn_size;
421 
422 		if (is_mmips && mm_insn_16bit(ip->halfword[0])) {
423 			insn.word = ip->halfword[0] << 16;
424 			last_insn_size = 2;
425 		} else if (is_mmips) {
426 			insn.word = ip->halfword[0] << 16 | ip->halfword[1];
427 			last_insn_size = 4;
428 		} else {
429 			insn.word = ip->word;
430 			last_insn_size = 4;
431 		}
432 
433 		if (is_jr_ra_ins(ip)) {
434 			break;
435 		} else if (!info->frame_size) {
436 			is_sp_move_ins(&insn, &info->frame_size);
437 			continue;
438 		} else if (!saw_jump && is_jump_ins(ip)) {
439 			/*
440 			 * If we see a jump instruction, we are finished
441 			 * with the frame save.
442 			 *
443 			 * Some functions can have a shortcut return at
444 			 * the beginning of the function, so don't start
445 			 * looking for jump instruction until we see the
446 			 * frame setup.
447 			 *
448 			 * The RA save instruction can get put into the
449 			 * delay slot of the jump instruction, so look
450 			 * at the next instruction, too.
451 			 */
452 			saw_jump = true;
453 			continue;
454 		}
455 		if (info->pc_offset == -1 &&
456 		    is_ra_save_ins(&insn, &info->pc_offset))
457 			break;
458 		if (saw_jump)
459 			break;
460 	}
461 	if (info->frame_size && info->pc_offset >= 0) /* nested */
462 		return 0;
463 	if (info->pc_offset < 0) /* leaf */
464 		return 1;
465 	/* prologue seems bogus... */
466 err:
467 	return -1;
468 }
469 
470 static struct mips_frame_info schedule_mfi __read_mostly;
471 
472 #ifdef CONFIG_KALLSYMS
473 static unsigned long get___schedule_addr(void)
474 {
475 	return kallsyms_lookup_name("__schedule");
476 }
477 #else
478 static unsigned long get___schedule_addr(void)
479 {
480 	union mips_instruction *ip = (void *)schedule;
481 	int max_insns = 8;
482 	int i;
483 
484 	for (i = 0; i < max_insns; i++, ip++) {
485 		if (ip->j_format.opcode == j_op)
486 			return J_TARGET(ip, ip->j_format.target);
487 	}
488 	return 0;
489 }
490 #endif
491 
492 static int __init frame_info_init(void)
493 {
494 	unsigned long size = 0;
495 #ifdef CONFIG_KALLSYMS
496 	unsigned long ofs;
497 #endif
498 	unsigned long addr;
499 
500 	addr = get___schedule_addr();
501 	if (!addr)
502 		addr = (unsigned long)schedule;
503 
504 #ifdef CONFIG_KALLSYMS
505 	kallsyms_lookup_size_offset(addr, &size, &ofs);
506 #endif
507 	schedule_mfi.func = (void *)addr;
508 	schedule_mfi.func_size = size;
509 
510 	get_frame_info(&schedule_mfi);
511 
512 	/*
513 	 * Without schedule() frame info, result given by
514 	 * thread_saved_pc() and __get_wchan() are not reliable.
515 	 */
516 	if (schedule_mfi.pc_offset < 0)
517 		printk("Can't analyze schedule() prologue at %p\n", schedule);
518 
519 	return 0;
520 }
521 
522 arch_initcall(frame_info_init);
523 
524 /*
525  * Return saved PC of a blocked thread.
526  */
527 static unsigned long thread_saved_pc(struct task_struct *tsk)
528 {
529 	struct thread_struct *t = &tsk->thread;
530 
531 	/* New born processes are a special case */
532 	if (t->reg31 == (unsigned long) ret_from_fork)
533 		return t->reg31;
534 	if (schedule_mfi.pc_offset < 0)
535 		return 0;
536 	return ((unsigned long *)t->reg29)[schedule_mfi.pc_offset];
537 }
538 
539 
540 #ifdef CONFIG_KALLSYMS
541 /* generic stack unwinding function */
542 unsigned long notrace unwind_stack_by_address(unsigned long stack_page,
543 					      unsigned long *sp,
544 					      unsigned long pc,
545 					      unsigned long *ra)
546 {
547 	unsigned long low, high, irq_stack_high;
548 	struct mips_frame_info info;
549 	unsigned long size, ofs;
550 	struct pt_regs *regs;
551 	int leaf;
552 
553 	if (!stack_page)
554 		return 0;
555 
556 	/*
557 	 * IRQ stacks start at IRQ_STACK_START
558 	 * task stacks at THREAD_SIZE - 32
559 	 */
560 	low = stack_page;
561 	if (!preemptible() && on_irq_stack(raw_smp_processor_id(), *sp)) {
562 		high = stack_page + IRQ_STACK_START;
563 		irq_stack_high = high;
564 	} else {
565 		high = stack_page + THREAD_SIZE - 32;
566 		irq_stack_high = 0;
567 	}
568 
569 	/*
570 	 * If we reached the top of the interrupt stack, start unwinding
571 	 * the interrupted task stack.
572 	 */
573 	if (unlikely(*sp == irq_stack_high)) {
574 		unsigned long task_sp = *(unsigned long *)*sp;
575 
576 		/*
577 		 * Check that the pointer saved in the IRQ stack head points to
578 		 * something within the stack of the current task
579 		 */
580 		if (!object_is_on_stack((void *)task_sp))
581 			return 0;
582 
583 		/*
584 		 * Follow pointer to tasks kernel stack frame where interrupted
585 		 * state was saved.
586 		 */
587 		regs = (struct pt_regs *)task_sp;
588 		pc = regs->cp0_epc;
589 		if (!user_mode(regs) && __kernel_text_address(pc)) {
590 			*sp = regs->regs[29];
591 			*ra = regs->regs[31];
592 			return pc;
593 		}
594 		return 0;
595 	}
596 	if (!kallsyms_lookup_size_offset(pc, &size, &ofs))
597 		return 0;
598 	/*
599 	 * Return ra if an exception occurred at the first instruction
600 	 */
601 	if (unlikely(ofs == 0)) {
602 		pc = *ra;
603 		*ra = 0;
604 		return pc;
605 	}
606 
607 	info.func = (void *)(pc - ofs);
608 	info.func_size = ofs;	/* analyze from start to ofs */
609 	leaf = get_frame_info(&info);
610 	if (leaf < 0)
611 		return 0;
612 
613 	if (*sp < low || *sp + info.frame_size > high)
614 		return 0;
615 
616 	if (leaf)
617 		/*
618 		 * For some extreme cases, get_frame_info() can
619 		 * consider wrongly a nested function as a leaf
620 		 * one. In that cases avoid to return always the
621 		 * same value.
622 		 */
623 		pc = pc != *ra ? *ra : 0;
624 	else
625 		pc = ((unsigned long *)(*sp))[info.pc_offset];
626 
627 	*sp += info.frame_size;
628 	*ra = 0;
629 	return __kernel_text_address(pc) ? pc : 0;
630 }
631 EXPORT_SYMBOL(unwind_stack_by_address);
632 
633 /* used by show_backtrace() */
634 unsigned long unwind_stack(struct task_struct *task, unsigned long *sp,
635 			   unsigned long pc, unsigned long *ra)
636 {
637 	unsigned long stack_page = 0;
638 	int cpu;
639 
640 	for_each_possible_cpu(cpu) {
641 		if (on_irq_stack(cpu, *sp)) {
642 			stack_page = (unsigned long)irq_stack[cpu];
643 			break;
644 		}
645 	}
646 
647 	if (!stack_page)
648 		stack_page = (unsigned long)task_stack_page(task);
649 
650 	return unwind_stack_by_address(stack_page, sp, pc, ra);
651 }
652 #endif
653 
654 /*
655  * __get_wchan - a maintenance nightmare^W^Wpain in the ass ...
656  */
657 unsigned long __get_wchan(struct task_struct *task)
658 {
659 	unsigned long pc = 0;
660 #ifdef CONFIG_KALLSYMS
661 	unsigned long sp;
662 	unsigned long ra = 0;
663 #endif
664 
665 	if (!task_stack_page(task))
666 		goto out;
667 
668 	pc = thread_saved_pc(task);
669 
670 #ifdef CONFIG_KALLSYMS
671 	sp = task->thread.reg29 + schedule_mfi.frame_size;
672 
673 	while (in_sched_functions(pc))
674 		pc = unwind_stack(task, &sp, pc, &ra);
675 #endif
676 
677 out:
678 	return pc;
679 }
680 
681 unsigned long mips_stack_top(void)
682 {
683 	unsigned long top = TASK_SIZE & PAGE_MASK;
684 
685 	if (IS_ENABLED(CONFIG_MIPS_FP_SUPPORT)) {
686 		/* One page for branch delay slot "emulation" */
687 		top -= PAGE_SIZE;
688 	}
689 
690 	/* Space for the VDSO, data page & GIC user page */
691 	top -= PAGE_ALIGN(current->thread.abi->vdso->size);
692 	top -= PAGE_SIZE;
693 	top -= mips_gic_present() ? PAGE_SIZE : 0;
694 
695 	/* Space for cache colour alignment */
696 	if (cpu_has_dc_aliases)
697 		top -= shm_align_mask + 1;
698 
699 	/* Space to randomize the VDSO base */
700 	if (current->flags & PF_RANDOMIZE)
701 		top -= VDSO_RANDOMIZE_SIZE;
702 
703 	return top;
704 }
705 
706 /*
707  * Don't forget that the stack pointer must be aligned on a 8 bytes
708  * boundary for 32-bits ABI and 16 bytes for 64-bits ABI.
709  */
710 unsigned long arch_align_stack(unsigned long sp)
711 {
712 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
713 		sp -= get_random_int() & ~PAGE_MASK;
714 
715 	return sp & ALMASK;
716 }
717 
718 static struct cpumask backtrace_csd_busy;
719 
720 static void handle_backtrace(void *info)
721 {
722 	nmi_cpu_backtrace(get_irq_regs());
723 	cpumask_clear_cpu(smp_processor_id(), &backtrace_csd_busy);
724 }
725 
726 static DEFINE_PER_CPU(call_single_data_t, backtrace_csd) =
727 	CSD_INIT(handle_backtrace, NULL);
728 
729 static void raise_backtrace(cpumask_t *mask)
730 {
731 	call_single_data_t *csd;
732 	int cpu;
733 
734 	for_each_cpu(cpu, mask) {
735 		/*
736 		 * If we previously sent an IPI to the target CPU & it hasn't
737 		 * cleared its bit in the busy cpumask then it didn't handle
738 		 * our previous IPI & it's not safe for us to reuse the
739 		 * call_single_data_t.
740 		 */
741 		if (cpumask_test_and_set_cpu(cpu, &backtrace_csd_busy)) {
742 			pr_warn("Unable to send backtrace IPI to CPU%u - perhaps it hung?\n",
743 				cpu);
744 			continue;
745 		}
746 
747 		csd = &per_cpu(backtrace_csd, cpu);
748 		smp_call_function_single_async(cpu, csd);
749 	}
750 }
751 
752 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
753 {
754 	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_backtrace);
755 }
756 
757 int mips_get_process_fp_mode(struct task_struct *task)
758 {
759 	int value = 0;
760 
761 	if (!test_tsk_thread_flag(task, TIF_32BIT_FPREGS))
762 		value |= PR_FP_MODE_FR;
763 	if (test_tsk_thread_flag(task, TIF_HYBRID_FPREGS))
764 		value |= PR_FP_MODE_FRE;
765 
766 	return value;
767 }
768 
769 static long prepare_for_fp_mode_switch(void *unused)
770 {
771 	/*
772 	 * This is icky, but we use this to simply ensure that all CPUs have
773 	 * context switched, regardless of whether they were previously running
774 	 * kernel or user code. This ensures that no CPU that a mode-switching
775 	 * program may execute on keeps its FPU enabled (& in the old mode)
776 	 * throughout the mode switch.
777 	 */
778 	return 0;
779 }
780 
781 int mips_set_process_fp_mode(struct task_struct *task, unsigned int value)
782 {
783 	const unsigned int known_bits = PR_FP_MODE_FR | PR_FP_MODE_FRE;
784 	struct task_struct *t;
785 	struct cpumask process_cpus;
786 	int cpu;
787 
788 	/* If nothing to change, return right away, successfully.  */
789 	if (value == mips_get_process_fp_mode(task))
790 		return 0;
791 
792 	/* Only accept a mode change if 64-bit FP enabled for o32.  */
793 	if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
794 		return -EOPNOTSUPP;
795 
796 	/* And only for o32 tasks.  */
797 	if (IS_ENABLED(CONFIG_64BIT) && !test_thread_flag(TIF_32BIT_REGS))
798 		return -EOPNOTSUPP;
799 
800 	/* Check the value is valid */
801 	if (value & ~known_bits)
802 		return -EOPNOTSUPP;
803 
804 	/* Setting FRE without FR is not supported.  */
805 	if ((value & (PR_FP_MODE_FR | PR_FP_MODE_FRE)) == PR_FP_MODE_FRE)
806 		return -EOPNOTSUPP;
807 
808 	/* Avoid inadvertently triggering emulation */
809 	if ((value & PR_FP_MODE_FR) && raw_cpu_has_fpu &&
810 	    !(raw_current_cpu_data.fpu_id & MIPS_FPIR_F64))
811 		return -EOPNOTSUPP;
812 	if ((value & PR_FP_MODE_FRE) && raw_cpu_has_fpu && !cpu_has_fre)
813 		return -EOPNOTSUPP;
814 
815 	/* FR = 0 not supported in MIPS R6 */
816 	if (!(value & PR_FP_MODE_FR) && raw_cpu_has_fpu && cpu_has_mips_r6)
817 		return -EOPNOTSUPP;
818 
819 	/* Indicate the new FP mode in each thread */
820 	for_each_thread(task, t) {
821 		/* Update desired FP register width */
822 		if (value & PR_FP_MODE_FR) {
823 			clear_tsk_thread_flag(t, TIF_32BIT_FPREGS);
824 		} else {
825 			set_tsk_thread_flag(t, TIF_32BIT_FPREGS);
826 			clear_tsk_thread_flag(t, TIF_MSA_CTX_LIVE);
827 		}
828 
829 		/* Update desired FP single layout */
830 		if (value & PR_FP_MODE_FRE)
831 			set_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
832 		else
833 			clear_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
834 	}
835 
836 	/*
837 	 * We need to ensure that all threads in the process have switched mode
838 	 * before returning, in order to allow userland to not worry about
839 	 * races. We can do this by forcing all CPUs that any thread in the
840 	 * process may be running on to schedule something else - in this case
841 	 * prepare_for_fp_mode_switch().
842 	 *
843 	 * We begin by generating a mask of all CPUs that any thread in the
844 	 * process may be running on.
845 	 */
846 	cpumask_clear(&process_cpus);
847 	for_each_thread(task, t)
848 		cpumask_set_cpu(task_cpu(t), &process_cpus);
849 
850 	/*
851 	 * Now we schedule prepare_for_fp_mode_switch() on each of those CPUs.
852 	 *
853 	 * The CPUs may have rescheduled already since we switched mode or
854 	 * generated the cpumask, but that doesn't matter. If the task in this
855 	 * process is scheduled out then our scheduling
856 	 * prepare_for_fp_mode_switch() will simply be redundant. If it's
857 	 * scheduled in then it will already have picked up the new FP mode
858 	 * whilst doing so.
859 	 */
860 	cpus_read_lock();
861 	for_each_cpu_and(cpu, &process_cpus, cpu_online_mask)
862 		work_on_cpu(cpu, prepare_for_fp_mode_switch, NULL);
863 	cpus_read_unlock();
864 
865 	return 0;
866 }
867 
868 #if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
869 void mips_dump_regs32(u32 *uregs, const struct pt_regs *regs)
870 {
871 	unsigned int i;
872 
873 	for (i = MIPS32_EF_R1; i <= MIPS32_EF_R31; i++) {
874 		/* k0/k1 are copied as zero. */
875 		if (i == MIPS32_EF_R26 || i == MIPS32_EF_R27)
876 			uregs[i] = 0;
877 		else
878 			uregs[i] = regs->regs[i - MIPS32_EF_R0];
879 	}
880 
881 	uregs[MIPS32_EF_LO] = regs->lo;
882 	uregs[MIPS32_EF_HI] = regs->hi;
883 	uregs[MIPS32_EF_CP0_EPC] = regs->cp0_epc;
884 	uregs[MIPS32_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
885 	uregs[MIPS32_EF_CP0_STATUS] = regs->cp0_status;
886 	uregs[MIPS32_EF_CP0_CAUSE] = regs->cp0_cause;
887 }
888 #endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
889 
890 #ifdef CONFIG_64BIT
891 void mips_dump_regs64(u64 *uregs, const struct pt_regs *regs)
892 {
893 	unsigned int i;
894 
895 	for (i = MIPS64_EF_R1; i <= MIPS64_EF_R31; i++) {
896 		/* k0/k1 are copied as zero. */
897 		if (i == MIPS64_EF_R26 || i == MIPS64_EF_R27)
898 			uregs[i] = 0;
899 		else
900 			uregs[i] = regs->regs[i - MIPS64_EF_R0];
901 	}
902 
903 	uregs[MIPS64_EF_LO] = regs->lo;
904 	uregs[MIPS64_EF_HI] = regs->hi;
905 	uregs[MIPS64_EF_CP0_EPC] = regs->cp0_epc;
906 	uregs[MIPS64_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
907 	uregs[MIPS64_EF_CP0_STATUS] = regs->cp0_status;
908 	uregs[MIPS64_EF_CP0_CAUSE] = regs->cp0_cause;
909 }
910 #endif /* CONFIG_64BIT */
911