xref: /openbmc/linux/arch/mips/kernel/process.c (revision 165f2d28)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000 by Ralf Baechle and others.
7  * Copyright (C) 2005, 2006 by Ralf Baechle (ralf@linux-mips.org)
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  * Copyright (C) 2004 Thiemo Seufer
10  * Copyright (C) 2013  Imagination Technologies Ltd.
11  */
12 #include <linux/errno.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/tick.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/export.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/personality.h>
26 #include <linux/sys.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/kallsyms.h>
30 #include <linux/random.h>
31 #include <linux/prctl.h>
32 #include <linux/nmi.h>
33 #include <linux/cpu.h>
34 
35 #include <asm/abi.h>
36 #include <asm/asm.h>
37 #include <asm/bootinfo.h>
38 #include <asm/cpu.h>
39 #include <asm/dsemul.h>
40 #include <asm/dsp.h>
41 #include <asm/fpu.h>
42 #include <asm/irq.h>
43 #include <asm/mips-cps.h>
44 #include <asm/msa.h>
45 #include <asm/pgtable.h>
46 #include <asm/mipsregs.h>
47 #include <asm/processor.h>
48 #include <asm/reg.h>
49 #include <linux/uaccess.h>
50 #include <asm/io.h>
51 #include <asm/elf.h>
52 #include <asm/isadep.h>
53 #include <asm/inst.h>
54 #include <asm/stacktrace.h>
55 #include <asm/irq_regs.h>
56 
57 #ifdef CONFIG_HOTPLUG_CPU
58 void arch_cpu_idle_dead(void)
59 {
60 	play_dead();
61 }
62 #endif
63 
64 asmlinkage void ret_from_fork(void);
65 asmlinkage void ret_from_kernel_thread(void);
66 
67 void start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
68 {
69 	unsigned long status;
70 
71 	/* New thread loses kernel privileges. */
72 	status = regs->cp0_status & ~(ST0_CU0|ST0_CU1|ST0_FR|KU_MASK);
73 	status |= KU_USER;
74 	regs->cp0_status = status;
75 	lose_fpu(0);
76 	clear_thread_flag(TIF_MSA_CTX_LIVE);
77 	clear_used_math();
78 #ifdef CONFIG_MIPS_FP_SUPPORT
79 	atomic_set(&current->thread.bd_emu_frame, BD_EMUFRAME_NONE);
80 #endif
81 	init_dsp();
82 	regs->cp0_epc = pc;
83 	regs->regs[29] = sp;
84 }
85 
86 void exit_thread(struct task_struct *tsk)
87 {
88 	/*
89 	 * User threads may have allocated a delay slot emulation frame.
90 	 * If so, clean up that allocation.
91 	 */
92 	if (!(current->flags & PF_KTHREAD))
93 		dsemul_thread_cleanup(tsk);
94 }
95 
96 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
97 {
98 	/*
99 	 * Save any process state which is live in hardware registers to the
100 	 * parent context prior to duplication. This prevents the new child
101 	 * state becoming stale if the parent is preempted before copy_thread()
102 	 * gets a chance to save the parent's live hardware registers to the
103 	 * child context.
104 	 */
105 	preempt_disable();
106 
107 	if (is_msa_enabled())
108 		save_msa(current);
109 	else if (is_fpu_owner())
110 		_save_fp(current);
111 
112 	save_dsp(current);
113 
114 	preempt_enable();
115 
116 	*dst = *src;
117 	return 0;
118 }
119 
120 /*
121  * Copy architecture-specific thread state
122  */
123 int copy_thread_tls(unsigned long clone_flags, unsigned long usp,
124 	unsigned long kthread_arg, struct task_struct *p, unsigned long tls)
125 {
126 	struct thread_info *ti = task_thread_info(p);
127 	struct pt_regs *childregs, *regs = current_pt_regs();
128 	unsigned long childksp;
129 
130 	childksp = (unsigned long)task_stack_page(p) + THREAD_SIZE - 32;
131 
132 	/* set up new TSS. */
133 	childregs = (struct pt_regs *) childksp - 1;
134 	/*  Put the stack after the struct pt_regs.  */
135 	childksp = (unsigned long) childregs;
136 	p->thread.cp0_status = read_c0_status() & ~(ST0_CU2|ST0_CU1);
137 	if (unlikely(p->flags & PF_KTHREAD)) {
138 		/* kernel thread */
139 		unsigned long status = p->thread.cp0_status;
140 		memset(childregs, 0, sizeof(struct pt_regs));
141 		ti->addr_limit = KERNEL_DS;
142 		p->thread.reg16 = usp; /* fn */
143 		p->thread.reg17 = kthread_arg;
144 		p->thread.reg29 = childksp;
145 		p->thread.reg31 = (unsigned long) ret_from_kernel_thread;
146 #if defined(CONFIG_CPU_R3000) || defined(CONFIG_CPU_TX39XX)
147 		status = (status & ~(ST0_KUP | ST0_IEP | ST0_IEC)) |
148 			 ((status & (ST0_KUC | ST0_IEC)) << 2);
149 #else
150 		status |= ST0_EXL;
151 #endif
152 		childregs->cp0_status = status;
153 		return 0;
154 	}
155 
156 	/* user thread */
157 	*childregs = *regs;
158 	childregs->regs[7] = 0; /* Clear error flag */
159 	childregs->regs[2] = 0; /* Child gets zero as return value */
160 	if (usp)
161 		childregs->regs[29] = usp;
162 	ti->addr_limit = USER_DS;
163 
164 	p->thread.reg29 = (unsigned long) childregs;
165 	p->thread.reg31 = (unsigned long) ret_from_fork;
166 
167 	/*
168 	 * New tasks lose permission to use the fpu. This accelerates context
169 	 * switching for most programs since they don't use the fpu.
170 	 */
171 	childregs->cp0_status &= ~(ST0_CU2|ST0_CU1);
172 
173 	clear_tsk_thread_flag(p, TIF_USEDFPU);
174 	clear_tsk_thread_flag(p, TIF_USEDMSA);
175 	clear_tsk_thread_flag(p, TIF_MSA_CTX_LIVE);
176 
177 #ifdef CONFIG_MIPS_MT_FPAFF
178 	clear_tsk_thread_flag(p, TIF_FPUBOUND);
179 #endif /* CONFIG_MIPS_MT_FPAFF */
180 
181 #ifdef CONFIG_MIPS_FP_SUPPORT
182 	atomic_set(&p->thread.bd_emu_frame, BD_EMUFRAME_NONE);
183 #endif
184 
185 	if (clone_flags & CLONE_SETTLS)
186 		ti->tp_value = tls;
187 
188 	return 0;
189 }
190 
191 #ifdef CONFIG_STACKPROTECTOR
192 #include <linux/stackprotector.h>
193 unsigned long __stack_chk_guard __read_mostly;
194 EXPORT_SYMBOL(__stack_chk_guard);
195 #endif
196 
197 struct mips_frame_info {
198 	void		*func;
199 	unsigned long	func_size;
200 	int		frame_size;
201 	int		pc_offset;
202 };
203 
204 #define J_TARGET(pc,target)	\
205 		(((unsigned long)(pc) & 0xf0000000) | ((target) << 2))
206 
207 static inline int is_ra_save_ins(union mips_instruction *ip, int *poff)
208 {
209 #ifdef CONFIG_CPU_MICROMIPS
210 	/*
211 	 * swsp ra,offset
212 	 * swm16 reglist,offset(sp)
213 	 * swm32 reglist,offset(sp)
214 	 * sw32 ra,offset(sp)
215 	 * jradiussp - NOT SUPPORTED
216 	 *
217 	 * microMIPS is way more fun...
218 	 */
219 	if (mm_insn_16bit(ip->word >> 16)) {
220 		switch (ip->mm16_r5_format.opcode) {
221 		case mm_swsp16_op:
222 			if (ip->mm16_r5_format.rt != 31)
223 				return 0;
224 
225 			*poff = ip->mm16_r5_format.imm;
226 			*poff = (*poff << 2) / sizeof(ulong);
227 			return 1;
228 
229 		case mm_pool16c_op:
230 			switch (ip->mm16_m_format.func) {
231 			case mm_swm16_op:
232 				*poff = ip->mm16_m_format.imm;
233 				*poff += 1 + ip->mm16_m_format.rlist;
234 				*poff = (*poff << 2) / sizeof(ulong);
235 				return 1;
236 
237 			default:
238 				return 0;
239 			}
240 
241 		default:
242 			return 0;
243 		}
244 	}
245 
246 	switch (ip->i_format.opcode) {
247 	case mm_sw32_op:
248 		if (ip->i_format.rs != 29)
249 			return 0;
250 		if (ip->i_format.rt != 31)
251 			return 0;
252 
253 		*poff = ip->i_format.simmediate / sizeof(ulong);
254 		return 1;
255 
256 	case mm_pool32b_op:
257 		switch (ip->mm_m_format.func) {
258 		case mm_swm32_func:
259 			if (ip->mm_m_format.rd < 0x10)
260 				return 0;
261 			if (ip->mm_m_format.base != 29)
262 				return 0;
263 
264 			*poff = ip->mm_m_format.simmediate;
265 			*poff += (ip->mm_m_format.rd & 0xf) * sizeof(u32);
266 			*poff /= sizeof(ulong);
267 			return 1;
268 		default:
269 			return 0;
270 		}
271 
272 	default:
273 		return 0;
274 	}
275 #else
276 	/* sw / sd $ra, offset($sp) */
277 	if ((ip->i_format.opcode == sw_op || ip->i_format.opcode == sd_op) &&
278 		ip->i_format.rs == 29 && ip->i_format.rt == 31) {
279 		*poff = ip->i_format.simmediate / sizeof(ulong);
280 		return 1;
281 	}
282 
283 	return 0;
284 #endif
285 }
286 
287 static inline int is_jump_ins(union mips_instruction *ip)
288 {
289 #ifdef CONFIG_CPU_MICROMIPS
290 	/*
291 	 * jr16,jrc,jalr16,jalr16
292 	 * jal
293 	 * jalr/jr,jalr.hb/jr.hb,jalrs,jalrs.hb
294 	 * jraddiusp - NOT SUPPORTED
295 	 *
296 	 * microMIPS is kind of more fun...
297 	 */
298 	if (mm_insn_16bit(ip->word >> 16)) {
299 		if ((ip->mm16_r5_format.opcode == mm_pool16c_op &&
300 		    (ip->mm16_r5_format.rt & mm_jr16_op) == mm_jr16_op))
301 			return 1;
302 		return 0;
303 	}
304 
305 	if (ip->j_format.opcode == mm_j32_op)
306 		return 1;
307 	if (ip->j_format.opcode == mm_jal32_op)
308 		return 1;
309 	if (ip->r_format.opcode != mm_pool32a_op ||
310 			ip->r_format.func != mm_pool32axf_op)
311 		return 0;
312 	return ((ip->u_format.uimmediate >> 6) & mm_jalr_op) == mm_jalr_op;
313 #else
314 	if (ip->j_format.opcode == j_op)
315 		return 1;
316 	if (ip->j_format.opcode == jal_op)
317 		return 1;
318 	if (ip->r_format.opcode != spec_op)
319 		return 0;
320 	return ip->r_format.func == jalr_op || ip->r_format.func == jr_op;
321 #endif
322 }
323 
324 static inline int is_sp_move_ins(union mips_instruction *ip, int *frame_size)
325 {
326 #ifdef CONFIG_CPU_MICROMIPS
327 	unsigned short tmp;
328 
329 	/*
330 	 * addiusp -imm
331 	 * addius5 sp,-imm
332 	 * addiu32 sp,sp,-imm
333 	 * jradiussp - NOT SUPPORTED
334 	 *
335 	 * microMIPS is not more fun...
336 	 */
337 	if (mm_insn_16bit(ip->word >> 16)) {
338 		if (ip->mm16_r3_format.opcode == mm_pool16d_op &&
339 		    ip->mm16_r3_format.simmediate & mm_addiusp_func) {
340 			tmp = ip->mm_b0_format.simmediate >> 1;
341 			tmp = ((tmp & 0x1ff) ^ 0x100) - 0x100;
342 			if ((tmp + 2) < 4) /* 0x0,0x1,0x1fe,0x1ff are special */
343 				tmp ^= 0x100;
344 			*frame_size = -(signed short)(tmp << 2);
345 			return 1;
346 		}
347 		if (ip->mm16_r5_format.opcode == mm_pool16d_op &&
348 		    ip->mm16_r5_format.rt == 29) {
349 			tmp = ip->mm16_r5_format.imm >> 1;
350 			*frame_size = -(signed short)(tmp & 0xf);
351 			return 1;
352 		}
353 		return 0;
354 	}
355 
356 	if (ip->mm_i_format.opcode == mm_addiu32_op &&
357 	    ip->mm_i_format.rt == 29 && ip->mm_i_format.rs == 29) {
358 		*frame_size = -ip->i_format.simmediate;
359 		return 1;
360 	}
361 #else
362 	/* addiu/daddiu sp,sp,-imm */
363 	if (ip->i_format.rs != 29 || ip->i_format.rt != 29)
364 		return 0;
365 
366 	if (ip->i_format.opcode == addiu_op ||
367 	    ip->i_format.opcode == daddiu_op) {
368 		*frame_size = -ip->i_format.simmediate;
369 		return 1;
370 	}
371 #endif
372 	return 0;
373 }
374 
375 static int get_frame_info(struct mips_frame_info *info)
376 {
377 	bool is_mmips = IS_ENABLED(CONFIG_CPU_MICROMIPS);
378 	union mips_instruction insn, *ip;
379 	const unsigned int max_insns = 128;
380 	unsigned int last_insn_size = 0;
381 	unsigned int i;
382 	bool saw_jump = false;
383 
384 	info->pc_offset = -1;
385 	info->frame_size = 0;
386 
387 	ip = (void *)msk_isa16_mode((ulong)info->func);
388 	if (!ip)
389 		goto err;
390 
391 	for (i = 0; i < max_insns; i++) {
392 		ip = (void *)ip + last_insn_size;
393 
394 		if (is_mmips && mm_insn_16bit(ip->halfword[0])) {
395 			insn.word = ip->halfword[0] << 16;
396 			last_insn_size = 2;
397 		} else if (is_mmips) {
398 			insn.word = ip->halfword[0] << 16 | ip->halfword[1];
399 			last_insn_size = 4;
400 		} else {
401 			insn.word = ip->word;
402 			last_insn_size = 4;
403 		}
404 
405 		if (!info->frame_size) {
406 			is_sp_move_ins(&insn, &info->frame_size);
407 			continue;
408 		} else if (!saw_jump && is_jump_ins(ip)) {
409 			/*
410 			 * If we see a jump instruction, we are finished
411 			 * with the frame save.
412 			 *
413 			 * Some functions can have a shortcut return at
414 			 * the beginning of the function, so don't start
415 			 * looking for jump instruction until we see the
416 			 * frame setup.
417 			 *
418 			 * The RA save instruction can get put into the
419 			 * delay slot of the jump instruction, so look
420 			 * at the next instruction, too.
421 			 */
422 			saw_jump = true;
423 			continue;
424 		}
425 		if (info->pc_offset == -1 &&
426 		    is_ra_save_ins(&insn, &info->pc_offset))
427 			break;
428 		if (saw_jump)
429 			break;
430 	}
431 	if (info->frame_size && info->pc_offset >= 0) /* nested */
432 		return 0;
433 	if (info->pc_offset < 0) /* leaf */
434 		return 1;
435 	/* prologue seems bogus... */
436 err:
437 	return -1;
438 }
439 
440 static struct mips_frame_info schedule_mfi __read_mostly;
441 
442 #ifdef CONFIG_KALLSYMS
443 static unsigned long get___schedule_addr(void)
444 {
445 	return kallsyms_lookup_name("__schedule");
446 }
447 #else
448 static unsigned long get___schedule_addr(void)
449 {
450 	union mips_instruction *ip = (void *)schedule;
451 	int max_insns = 8;
452 	int i;
453 
454 	for (i = 0; i < max_insns; i++, ip++) {
455 		if (ip->j_format.opcode == j_op)
456 			return J_TARGET(ip, ip->j_format.target);
457 	}
458 	return 0;
459 }
460 #endif
461 
462 static int __init frame_info_init(void)
463 {
464 	unsigned long size = 0;
465 #ifdef CONFIG_KALLSYMS
466 	unsigned long ofs;
467 #endif
468 	unsigned long addr;
469 
470 	addr = get___schedule_addr();
471 	if (!addr)
472 		addr = (unsigned long)schedule;
473 
474 #ifdef CONFIG_KALLSYMS
475 	kallsyms_lookup_size_offset(addr, &size, &ofs);
476 #endif
477 	schedule_mfi.func = (void *)addr;
478 	schedule_mfi.func_size = size;
479 
480 	get_frame_info(&schedule_mfi);
481 
482 	/*
483 	 * Without schedule() frame info, result given by
484 	 * thread_saved_pc() and get_wchan() are not reliable.
485 	 */
486 	if (schedule_mfi.pc_offset < 0)
487 		printk("Can't analyze schedule() prologue at %p\n", schedule);
488 
489 	return 0;
490 }
491 
492 arch_initcall(frame_info_init);
493 
494 /*
495  * Return saved PC of a blocked thread.
496  */
497 static unsigned long thread_saved_pc(struct task_struct *tsk)
498 {
499 	struct thread_struct *t = &tsk->thread;
500 
501 	/* New born processes are a special case */
502 	if (t->reg31 == (unsigned long) ret_from_fork)
503 		return t->reg31;
504 	if (schedule_mfi.pc_offset < 0)
505 		return 0;
506 	return ((unsigned long *)t->reg29)[schedule_mfi.pc_offset];
507 }
508 
509 
510 #ifdef CONFIG_KALLSYMS
511 /* generic stack unwinding function */
512 unsigned long notrace unwind_stack_by_address(unsigned long stack_page,
513 					      unsigned long *sp,
514 					      unsigned long pc,
515 					      unsigned long *ra)
516 {
517 	unsigned long low, high, irq_stack_high;
518 	struct mips_frame_info info;
519 	unsigned long size, ofs;
520 	struct pt_regs *regs;
521 	int leaf;
522 
523 	if (!stack_page)
524 		return 0;
525 
526 	/*
527 	 * IRQ stacks start at IRQ_STACK_START
528 	 * task stacks at THREAD_SIZE - 32
529 	 */
530 	low = stack_page;
531 	if (!preemptible() && on_irq_stack(raw_smp_processor_id(), *sp)) {
532 		high = stack_page + IRQ_STACK_START;
533 		irq_stack_high = high;
534 	} else {
535 		high = stack_page + THREAD_SIZE - 32;
536 		irq_stack_high = 0;
537 	}
538 
539 	/*
540 	 * If we reached the top of the interrupt stack, start unwinding
541 	 * the interrupted task stack.
542 	 */
543 	if (unlikely(*sp == irq_stack_high)) {
544 		unsigned long task_sp = *(unsigned long *)*sp;
545 
546 		/*
547 		 * Check that the pointer saved in the IRQ stack head points to
548 		 * something within the stack of the current task
549 		 */
550 		if (!object_is_on_stack((void *)task_sp))
551 			return 0;
552 
553 		/*
554 		 * Follow pointer to tasks kernel stack frame where interrupted
555 		 * state was saved.
556 		 */
557 		regs = (struct pt_regs *)task_sp;
558 		pc = regs->cp0_epc;
559 		if (!user_mode(regs) && __kernel_text_address(pc)) {
560 			*sp = regs->regs[29];
561 			*ra = regs->regs[31];
562 			return pc;
563 		}
564 		return 0;
565 	}
566 	if (!kallsyms_lookup_size_offset(pc, &size, &ofs))
567 		return 0;
568 	/*
569 	 * Return ra if an exception occurred at the first instruction
570 	 */
571 	if (unlikely(ofs == 0)) {
572 		pc = *ra;
573 		*ra = 0;
574 		return pc;
575 	}
576 
577 	info.func = (void *)(pc - ofs);
578 	info.func_size = ofs;	/* analyze from start to ofs */
579 	leaf = get_frame_info(&info);
580 	if (leaf < 0)
581 		return 0;
582 
583 	if (*sp < low || *sp + info.frame_size > high)
584 		return 0;
585 
586 	if (leaf)
587 		/*
588 		 * For some extreme cases, get_frame_info() can
589 		 * consider wrongly a nested function as a leaf
590 		 * one. In that cases avoid to return always the
591 		 * same value.
592 		 */
593 		pc = pc != *ra ? *ra : 0;
594 	else
595 		pc = ((unsigned long *)(*sp))[info.pc_offset];
596 
597 	*sp += info.frame_size;
598 	*ra = 0;
599 	return __kernel_text_address(pc) ? pc : 0;
600 }
601 EXPORT_SYMBOL(unwind_stack_by_address);
602 
603 /* used by show_backtrace() */
604 unsigned long unwind_stack(struct task_struct *task, unsigned long *sp,
605 			   unsigned long pc, unsigned long *ra)
606 {
607 	unsigned long stack_page = 0;
608 	int cpu;
609 
610 	for_each_possible_cpu(cpu) {
611 		if (on_irq_stack(cpu, *sp)) {
612 			stack_page = (unsigned long)irq_stack[cpu];
613 			break;
614 		}
615 	}
616 
617 	if (!stack_page)
618 		stack_page = (unsigned long)task_stack_page(task);
619 
620 	return unwind_stack_by_address(stack_page, sp, pc, ra);
621 }
622 #endif
623 
624 /*
625  * get_wchan - a maintenance nightmare^W^Wpain in the ass ...
626  */
627 unsigned long get_wchan(struct task_struct *task)
628 {
629 	unsigned long pc = 0;
630 #ifdef CONFIG_KALLSYMS
631 	unsigned long sp;
632 	unsigned long ra = 0;
633 #endif
634 
635 	if (!task || task == current || task->state == TASK_RUNNING)
636 		goto out;
637 	if (!task_stack_page(task))
638 		goto out;
639 
640 	pc = thread_saved_pc(task);
641 
642 #ifdef CONFIG_KALLSYMS
643 	sp = task->thread.reg29 + schedule_mfi.frame_size;
644 
645 	while (in_sched_functions(pc))
646 		pc = unwind_stack(task, &sp, pc, &ra);
647 #endif
648 
649 out:
650 	return pc;
651 }
652 
653 unsigned long mips_stack_top(void)
654 {
655 	unsigned long top = TASK_SIZE & PAGE_MASK;
656 
657 	if (IS_ENABLED(CONFIG_MIPS_FP_SUPPORT)) {
658 		/* One page for branch delay slot "emulation" */
659 		top -= PAGE_SIZE;
660 	}
661 
662 	/* Space for the VDSO, data page & GIC user page */
663 	top -= PAGE_ALIGN(current->thread.abi->vdso->size);
664 	top -= PAGE_SIZE;
665 	top -= mips_gic_present() ? PAGE_SIZE : 0;
666 
667 	/* Space for cache colour alignment */
668 	if (cpu_has_dc_aliases)
669 		top -= shm_align_mask + 1;
670 
671 	/* Space to randomize the VDSO base */
672 	if (current->flags & PF_RANDOMIZE)
673 		top -= VDSO_RANDOMIZE_SIZE;
674 
675 	return top;
676 }
677 
678 /*
679  * Don't forget that the stack pointer must be aligned on a 8 bytes
680  * boundary for 32-bits ABI and 16 bytes for 64-bits ABI.
681  */
682 unsigned long arch_align_stack(unsigned long sp)
683 {
684 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
685 		sp -= get_random_int() & ~PAGE_MASK;
686 
687 	return sp & ALMASK;
688 }
689 
690 static DEFINE_PER_CPU(call_single_data_t, backtrace_csd);
691 static struct cpumask backtrace_csd_busy;
692 
693 static void handle_backtrace(void *info)
694 {
695 	nmi_cpu_backtrace(get_irq_regs());
696 	cpumask_clear_cpu(smp_processor_id(), &backtrace_csd_busy);
697 }
698 
699 static void raise_backtrace(cpumask_t *mask)
700 {
701 	call_single_data_t *csd;
702 	int cpu;
703 
704 	for_each_cpu(cpu, mask) {
705 		/*
706 		 * If we previously sent an IPI to the target CPU & it hasn't
707 		 * cleared its bit in the busy cpumask then it didn't handle
708 		 * our previous IPI & it's not safe for us to reuse the
709 		 * call_single_data_t.
710 		 */
711 		if (cpumask_test_and_set_cpu(cpu, &backtrace_csd_busy)) {
712 			pr_warn("Unable to send backtrace IPI to CPU%u - perhaps it hung?\n",
713 				cpu);
714 			continue;
715 		}
716 
717 		csd = &per_cpu(backtrace_csd, cpu);
718 		csd->func = handle_backtrace;
719 		smp_call_function_single_async(cpu, csd);
720 	}
721 }
722 
723 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
724 {
725 	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_backtrace);
726 }
727 
728 int mips_get_process_fp_mode(struct task_struct *task)
729 {
730 	int value = 0;
731 
732 	if (!test_tsk_thread_flag(task, TIF_32BIT_FPREGS))
733 		value |= PR_FP_MODE_FR;
734 	if (test_tsk_thread_flag(task, TIF_HYBRID_FPREGS))
735 		value |= PR_FP_MODE_FRE;
736 
737 	return value;
738 }
739 
740 static long prepare_for_fp_mode_switch(void *unused)
741 {
742 	/*
743 	 * This is icky, but we use this to simply ensure that all CPUs have
744 	 * context switched, regardless of whether they were previously running
745 	 * kernel or user code. This ensures that no CPU that a mode-switching
746 	 * program may execute on keeps its FPU enabled (& in the old mode)
747 	 * throughout the mode switch.
748 	 */
749 	return 0;
750 }
751 
752 int mips_set_process_fp_mode(struct task_struct *task, unsigned int value)
753 {
754 	const unsigned int known_bits = PR_FP_MODE_FR | PR_FP_MODE_FRE;
755 	struct task_struct *t;
756 	struct cpumask process_cpus;
757 	int cpu;
758 
759 	/* If nothing to change, return right away, successfully.  */
760 	if (value == mips_get_process_fp_mode(task))
761 		return 0;
762 
763 	/* Only accept a mode change if 64-bit FP enabled for o32.  */
764 	if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
765 		return -EOPNOTSUPP;
766 
767 	/* And only for o32 tasks.  */
768 	if (IS_ENABLED(CONFIG_64BIT) && !test_thread_flag(TIF_32BIT_REGS))
769 		return -EOPNOTSUPP;
770 
771 	/* Check the value is valid */
772 	if (value & ~known_bits)
773 		return -EOPNOTSUPP;
774 
775 	/* Setting FRE without FR is not supported.  */
776 	if ((value & (PR_FP_MODE_FR | PR_FP_MODE_FRE)) == PR_FP_MODE_FRE)
777 		return -EOPNOTSUPP;
778 
779 	/* Avoid inadvertently triggering emulation */
780 	if ((value & PR_FP_MODE_FR) && raw_cpu_has_fpu &&
781 	    !(raw_current_cpu_data.fpu_id & MIPS_FPIR_F64))
782 		return -EOPNOTSUPP;
783 	if ((value & PR_FP_MODE_FRE) && raw_cpu_has_fpu && !cpu_has_fre)
784 		return -EOPNOTSUPP;
785 
786 	/* FR = 0 not supported in MIPS R6 */
787 	if (!(value & PR_FP_MODE_FR) && raw_cpu_has_fpu && cpu_has_mips_r6)
788 		return -EOPNOTSUPP;
789 
790 	/* Indicate the new FP mode in each thread */
791 	for_each_thread(task, t) {
792 		/* Update desired FP register width */
793 		if (value & PR_FP_MODE_FR) {
794 			clear_tsk_thread_flag(t, TIF_32BIT_FPREGS);
795 		} else {
796 			set_tsk_thread_flag(t, TIF_32BIT_FPREGS);
797 			clear_tsk_thread_flag(t, TIF_MSA_CTX_LIVE);
798 		}
799 
800 		/* Update desired FP single layout */
801 		if (value & PR_FP_MODE_FRE)
802 			set_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
803 		else
804 			clear_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
805 	}
806 
807 	/*
808 	 * We need to ensure that all threads in the process have switched mode
809 	 * before returning, in order to allow userland to not worry about
810 	 * races. We can do this by forcing all CPUs that any thread in the
811 	 * process may be running on to schedule something else - in this case
812 	 * prepare_for_fp_mode_switch().
813 	 *
814 	 * We begin by generating a mask of all CPUs that any thread in the
815 	 * process may be running on.
816 	 */
817 	cpumask_clear(&process_cpus);
818 	for_each_thread(task, t)
819 		cpumask_set_cpu(task_cpu(t), &process_cpus);
820 
821 	/*
822 	 * Now we schedule prepare_for_fp_mode_switch() on each of those CPUs.
823 	 *
824 	 * The CPUs may have rescheduled already since we switched mode or
825 	 * generated the cpumask, but that doesn't matter. If the task in this
826 	 * process is scheduled out then our scheduling
827 	 * prepare_for_fp_mode_switch() will simply be redundant. If it's
828 	 * scheduled in then it will already have picked up the new FP mode
829 	 * whilst doing so.
830 	 */
831 	get_online_cpus();
832 	for_each_cpu_and(cpu, &process_cpus, cpu_online_mask)
833 		work_on_cpu(cpu, prepare_for_fp_mode_switch, NULL);
834 	put_online_cpus();
835 
836 	return 0;
837 }
838 
839 #if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
840 void mips_dump_regs32(u32 *uregs, const struct pt_regs *regs)
841 {
842 	unsigned int i;
843 
844 	for (i = MIPS32_EF_R1; i <= MIPS32_EF_R31; i++) {
845 		/* k0/k1 are copied as zero. */
846 		if (i == MIPS32_EF_R26 || i == MIPS32_EF_R27)
847 			uregs[i] = 0;
848 		else
849 			uregs[i] = regs->regs[i - MIPS32_EF_R0];
850 	}
851 
852 	uregs[MIPS32_EF_LO] = regs->lo;
853 	uregs[MIPS32_EF_HI] = regs->hi;
854 	uregs[MIPS32_EF_CP0_EPC] = regs->cp0_epc;
855 	uregs[MIPS32_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
856 	uregs[MIPS32_EF_CP0_STATUS] = regs->cp0_status;
857 	uregs[MIPS32_EF_CP0_CAUSE] = regs->cp0_cause;
858 }
859 #endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
860 
861 #ifdef CONFIG_64BIT
862 void mips_dump_regs64(u64 *uregs, const struct pt_regs *regs)
863 {
864 	unsigned int i;
865 
866 	for (i = MIPS64_EF_R1; i <= MIPS64_EF_R31; i++) {
867 		/* k0/k1 are copied as zero. */
868 		if (i == MIPS64_EF_R26 || i == MIPS64_EF_R27)
869 			uregs[i] = 0;
870 		else
871 			uregs[i] = regs->regs[i - MIPS64_EF_R0];
872 	}
873 
874 	uregs[MIPS64_EF_LO] = regs->lo;
875 	uregs[MIPS64_EF_HI] = regs->hi;
876 	uregs[MIPS64_EF_CP0_EPC] = regs->cp0_epc;
877 	uregs[MIPS64_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
878 	uregs[MIPS64_EF_CP0_STATUS] = regs->cp0_status;
879 	uregs[MIPS64_EF_CP0_CAUSE] = regs->cp0_cause;
880 }
881 #endif /* CONFIG_64BIT */
882