1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2014 Imagination Technologies 4 * Author: Paul Burton <paul.burton@mips.com> 5 */ 6 7 #include <linux/cpuhotplug.h> 8 #include <linux/init.h> 9 #include <linux/percpu.h> 10 #include <linux/slab.h> 11 #include <linux/suspend.h> 12 13 #include <asm/asm-offsets.h> 14 #include <asm/cacheflush.h> 15 #include <asm/cacheops.h> 16 #include <asm/idle.h> 17 #include <asm/mips-cps.h> 18 #include <asm/mipsmtregs.h> 19 #include <asm/pm.h> 20 #include <asm/pm-cps.h> 21 #include <asm/smp-cps.h> 22 #include <asm/uasm.h> 23 24 /* 25 * cps_nc_entry_fn - type of a generated non-coherent state entry function 26 * @online: the count of online coupled VPEs 27 * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count 28 * 29 * The code entering & exiting non-coherent states is generated at runtime 30 * using uasm, in order to ensure that the compiler cannot insert a stray 31 * memory access at an unfortunate time and to allow the generation of optimal 32 * core-specific code particularly for cache routines. If coupled_coherence 33 * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state, 34 * returns the number of VPEs that were in the wait state at the point this 35 * VPE left it. Returns garbage if coupled_coherence is zero or this is not 36 * the entry function for CPS_PM_NC_WAIT. 37 */ 38 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count); 39 40 /* 41 * The entry point of the generated non-coherent idle state entry/exit 42 * functions. Actually per-core rather than per-CPU. 43 */ 44 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT], 45 nc_asm_enter); 46 47 /* Bitmap indicating which states are supported by the system */ 48 static DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT); 49 50 /* 51 * Indicates the number of coupled VPEs ready to operate in a non-coherent 52 * state. Actually per-core rather than per-CPU. 53 */ 54 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count); 55 56 /* Indicates online CPUs coupled with the current CPU */ 57 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled); 58 59 /* 60 * Used to synchronize entry to deep idle states. Actually per-core rather 61 * than per-CPU. 62 */ 63 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier); 64 65 /* Saved CPU state across the CPS_PM_POWER_GATED state */ 66 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state); 67 68 /* A somewhat arbitrary number of labels & relocs for uasm */ 69 static struct uasm_label labels[32]; 70 static struct uasm_reloc relocs[32]; 71 72 enum mips_reg { 73 zero, at, v0, v1, a0, a1, a2, a3, 74 t0, t1, t2, t3, t4, t5, t6, t7, 75 s0, s1, s2, s3, s4, s5, s6, s7, 76 t8, t9, k0, k1, gp, sp, fp, ra, 77 }; 78 79 bool cps_pm_support_state(enum cps_pm_state state) 80 { 81 return test_bit(state, state_support); 82 } 83 84 static void coupled_barrier(atomic_t *a, unsigned online) 85 { 86 /* 87 * This function is effectively the same as 88 * cpuidle_coupled_parallel_barrier, which can't be used here since 89 * there's no cpuidle device. 90 */ 91 92 if (!coupled_coherence) 93 return; 94 95 smp_mb__before_atomic(); 96 atomic_inc(a); 97 98 while (atomic_read(a) < online) 99 cpu_relax(); 100 101 if (atomic_inc_return(a) == online * 2) { 102 atomic_set(a, 0); 103 return; 104 } 105 106 while (atomic_read(a) > online) 107 cpu_relax(); 108 } 109 110 int cps_pm_enter_state(enum cps_pm_state state) 111 { 112 unsigned cpu = smp_processor_id(); 113 unsigned core = cpu_core(¤t_cpu_data); 114 unsigned online, left; 115 cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled); 116 u32 *core_ready_count, *nc_core_ready_count; 117 void *nc_addr; 118 cps_nc_entry_fn entry; 119 struct core_boot_config *core_cfg; 120 struct vpe_boot_config *vpe_cfg; 121 122 /* Check that there is an entry function for this state */ 123 entry = per_cpu(nc_asm_enter, core)[state]; 124 if (!entry) 125 return -EINVAL; 126 127 /* Calculate which coupled CPUs (VPEs) are online */ 128 #if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6) 129 if (cpu_online(cpu)) { 130 cpumask_and(coupled_mask, cpu_online_mask, 131 &cpu_sibling_map[cpu]); 132 online = cpumask_weight(coupled_mask); 133 cpumask_clear_cpu(cpu, coupled_mask); 134 } else 135 #endif 136 { 137 cpumask_clear(coupled_mask); 138 online = 1; 139 } 140 141 /* Setup the VPE to run mips_cps_pm_restore when started again */ 142 if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) { 143 /* Power gating relies upon CPS SMP */ 144 if (!mips_cps_smp_in_use()) 145 return -EINVAL; 146 147 core_cfg = &mips_cps_core_bootcfg[core]; 148 vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(¤t_cpu_data)]; 149 vpe_cfg->pc = (unsigned long)mips_cps_pm_restore; 150 vpe_cfg->gp = (unsigned long)current_thread_info(); 151 vpe_cfg->sp = 0; 152 } 153 154 /* Indicate that this CPU might not be coherent */ 155 cpumask_clear_cpu(cpu, &cpu_coherent_mask); 156 smp_mb__after_atomic(); 157 158 /* Create a non-coherent mapping of the core ready_count */ 159 core_ready_count = per_cpu(ready_count, core); 160 nc_addr = kmap_noncoherent(virt_to_page(core_ready_count), 161 (unsigned long)core_ready_count); 162 nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK); 163 nc_core_ready_count = nc_addr; 164 165 /* Ensure ready_count is zero-initialised before the assembly runs */ 166 WRITE_ONCE(*nc_core_ready_count, 0); 167 coupled_barrier(&per_cpu(pm_barrier, core), online); 168 169 /* Run the generated entry code */ 170 left = entry(online, nc_core_ready_count); 171 172 /* Remove the non-coherent mapping of ready_count */ 173 kunmap_noncoherent(); 174 175 /* Indicate that this CPU is definitely coherent */ 176 cpumask_set_cpu(cpu, &cpu_coherent_mask); 177 178 /* 179 * If this VPE is the first to leave the non-coherent wait state then 180 * it needs to wake up any coupled VPEs still running their wait 181 * instruction so that they return to cpuidle, which can then complete 182 * coordination between the coupled VPEs & provide the governor with 183 * a chance to reflect on the length of time the VPEs were in the 184 * idle state. 185 */ 186 if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online)) 187 arch_send_call_function_ipi_mask(coupled_mask); 188 189 return 0; 190 } 191 192 static void cps_gen_cache_routine(u32 **pp, struct uasm_label **pl, 193 struct uasm_reloc **pr, 194 const struct cache_desc *cache, 195 unsigned op, int lbl) 196 { 197 unsigned cache_size = cache->ways << cache->waybit; 198 unsigned i; 199 const unsigned unroll_lines = 32; 200 201 /* If the cache isn't present this function has it easy */ 202 if (cache->flags & MIPS_CACHE_NOT_PRESENT) 203 return; 204 205 /* Load base address */ 206 UASM_i_LA(pp, t0, (long)CKSEG0); 207 208 /* Calculate end address */ 209 if (cache_size < 0x8000) 210 uasm_i_addiu(pp, t1, t0, cache_size); 211 else 212 UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size)); 213 214 /* Start of cache op loop */ 215 uasm_build_label(pl, *pp, lbl); 216 217 /* Generate the cache ops */ 218 for (i = 0; i < unroll_lines; i++) { 219 if (cpu_has_mips_r6) { 220 uasm_i_cache(pp, op, 0, t0); 221 uasm_i_addiu(pp, t0, t0, cache->linesz); 222 } else { 223 uasm_i_cache(pp, op, i * cache->linesz, t0); 224 } 225 } 226 227 if (!cpu_has_mips_r6) 228 /* Update the base address */ 229 uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz); 230 231 /* Loop if we haven't reached the end address yet */ 232 uasm_il_bne(pp, pr, t0, t1, lbl); 233 uasm_i_nop(pp); 234 } 235 236 static int cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl, 237 struct uasm_reloc **pr, 238 const struct cpuinfo_mips *cpu_info, 239 int lbl) 240 { 241 unsigned i, fsb_size = 8; 242 unsigned num_loads = (fsb_size * 3) / 2; 243 unsigned line_stride = 2; 244 unsigned line_size = cpu_info->dcache.linesz; 245 unsigned perf_counter, perf_event; 246 unsigned revision = cpu_info->processor_id & PRID_REV_MASK; 247 248 /* 249 * Determine whether this CPU requires an FSB flush, and if so which 250 * performance counter/event reflect stalls due to a full FSB. 251 */ 252 switch (__get_cpu_type(cpu_info->cputype)) { 253 case CPU_INTERAPTIV: 254 perf_counter = 1; 255 perf_event = 51; 256 break; 257 258 case CPU_PROAPTIV: 259 /* Newer proAptiv cores don't require this workaround */ 260 if (revision >= PRID_REV_ENCODE_332(1, 1, 0)) 261 return 0; 262 263 /* On older ones it's unavailable */ 264 return -1; 265 266 default: 267 /* Assume that the CPU does not need this workaround */ 268 return 0; 269 } 270 271 /* 272 * Ensure that the fill/store buffer (FSB) is not holding the results 273 * of a prefetch, since if it is then the CPC sequencer may become 274 * stuck in the D3 (ClrBus) state whilst entering a low power state. 275 */ 276 277 /* Preserve perf counter setup */ 278 uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 279 uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */ 280 281 /* Setup perf counter to count FSB full pipeline stalls */ 282 uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf); 283 uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 284 uasm_i_ehb(pp); 285 uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */ 286 uasm_i_ehb(pp); 287 288 /* Base address for loads */ 289 UASM_i_LA(pp, t0, (long)CKSEG0); 290 291 /* Start of clear loop */ 292 uasm_build_label(pl, *pp, lbl); 293 294 /* Perform some loads to fill the FSB */ 295 for (i = 0; i < num_loads; i++) 296 uasm_i_lw(pp, zero, i * line_size * line_stride, t0); 297 298 /* 299 * Invalidate the new D-cache entries so that the cache will need 300 * refilling (via the FSB) if the loop is executed again. 301 */ 302 for (i = 0; i < num_loads; i++) { 303 uasm_i_cache(pp, Hit_Invalidate_D, 304 i * line_size * line_stride, t0); 305 uasm_i_cache(pp, Hit_Writeback_Inv_SD, 306 i * line_size * line_stride, t0); 307 } 308 309 /* Barrier ensuring previous cache invalidates are complete */ 310 uasm_i_sync(pp, __SYNC_full); 311 uasm_i_ehb(pp); 312 313 /* Check whether the pipeline stalled due to the FSB being full */ 314 uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */ 315 316 /* Loop if it didn't */ 317 uasm_il_beqz(pp, pr, t1, lbl); 318 uasm_i_nop(pp); 319 320 /* Restore perf counter 1. The count may well now be wrong... */ 321 uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 322 uasm_i_ehb(pp); 323 uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */ 324 uasm_i_ehb(pp); 325 326 return 0; 327 } 328 329 static void cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl, 330 struct uasm_reloc **pr, 331 unsigned r_addr, int lbl) 332 { 333 uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000)); 334 uasm_build_label(pl, *pp, lbl); 335 uasm_i_ll(pp, t1, 0, r_addr); 336 uasm_i_or(pp, t1, t1, t0); 337 uasm_i_sc(pp, t1, 0, r_addr); 338 uasm_il_beqz(pp, pr, t1, lbl); 339 uasm_i_nop(pp); 340 } 341 342 static void *cps_gen_entry_code(unsigned cpu, enum cps_pm_state state) 343 { 344 struct uasm_label *l = labels; 345 struct uasm_reloc *r = relocs; 346 u32 *buf, *p; 347 const unsigned r_online = a0; 348 const unsigned r_nc_count = a1; 349 const unsigned r_pcohctl = t7; 350 const unsigned max_instrs = 256; 351 unsigned cpc_cmd; 352 int err; 353 enum { 354 lbl_incready = 1, 355 lbl_poll_cont, 356 lbl_secondary_hang, 357 lbl_disable_coherence, 358 lbl_flush_fsb, 359 lbl_invicache, 360 lbl_flushdcache, 361 lbl_hang, 362 lbl_set_cont, 363 lbl_secondary_cont, 364 lbl_decready, 365 }; 366 367 /* Allocate a buffer to hold the generated code */ 368 p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL); 369 if (!buf) 370 return NULL; 371 372 /* Clear labels & relocs ready for (re)use */ 373 memset(labels, 0, sizeof(labels)); 374 memset(relocs, 0, sizeof(relocs)); 375 376 if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) { 377 /* Power gating relies upon CPS SMP */ 378 if (!mips_cps_smp_in_use()) 379 goto out_err; 380 381 /* 382 * Save CPU state. Note the non-standard calling convention 383 * with the return address placed in v0 to avoid clobbering 384 * the ra register before it is saved. 385 */ 386 UASM_i_LA(&p, t0, (long)mips_cps_pm_save); 387 uasm_i_jalr(&p, v0, t0); 388 uasm_i_nop(&p); 389 } 390 391 /* 392 * Load addresses of required CM & CPC registers. This is done early 393 * because they're needed in both the enable & disable coherence steps 394 * but in the coupled case the enable step will only run on one VPE. 395 */ 396 UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence()); 397 398 if (coupled_coherence) { 399 /* Increment ready_count */ 400 uasm_i_sync(&p, __SYNC_mb); 401 uasm_build_label(&l, p, lbl_incready); 402 uasm_i_ll(&p, t1, 0, r_nc_count); 403 uasm_i_addiu(&p, t2, t1, 1); 404 uasm_i_sc(&p, t2, 0, r_nc_count); 405 uasm_il_beqz(&p, &r, t2, lbl_incready); 406 uasm_i_addiu(&p, t1, t1, 1); 407 408 /* Barrier ensuring all CPUs see the updated r_nc_count value */ 409 uasm_i_sync(&p, __SYNC_mb); 410 411 /* 412 * If this is the last VPE to become ready for non-coherence 413 * then it should branch below. 414 */ 415 uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence); 416 uasm_i_nop(&p); 417 418 if (state < CPS_PM_POWER_GATED) { 419 /* 420 * Otherwise this is not the last VPE to become ready 421 * for non-coherence. It needs to wait until coherence 422 * has been disabled before proceeding, which it will do 423 * by polling for the top bit of ready_count being set. 424 */ 425 uasm_i_addiu(&p, t1, zero, -1); 426 uasm_build_label(&l, p, lbl_poll_cont); 427 uasm_i_lw(&p, t0, 0, r_nc_count); 428 uasm_il_bltz(&p, &r, t0, lbl_secondary_cont); 429 uasm_i_ehb(&p); 430 if (cpu_has_mipsmt) 431 uasm_i_yield(&p, zero, t1); 432 uasm_il_b(&p, &r, lbl_poll_cont); 433 uasm_i_nop(&p); 434 } else { 435 /* 436 * The core will lose power & this VPE will not continue 437 * so it can simply halt here. 438 */ 439 if (cpu_has_mipsmt) { 440 /* Halt the VPE via C0 tchalt register */ 441 uasm_i_addiu(&p, t0, zero, TCHALT_H); 442 uasm_i_mtc0(&p, t0, 2, 4); 443 } else if (cpu_has_vp) { 444 /* Halt the VP via the CPC VP_STOP register */ 445 unsigned int vpe_id; 446 447 vpe_id = cpu_vpe_id(&cpu_data[cpu]); 448 uasm_i_addiu(&p, t0, zero, 1 << vpe_id); 449 UASM_i_LA(&p, t1, (long)addr_cpc_cl_vp_stop()); 450 uasm_i_sw(&p, t0, 0, t1); 451 } else { 452 BUG(); 453 } 454 uasm_build_label(&l, p, lbl_secondary_hang); 455 uasm_il_b(&p, &r, lbl_secondary_hang); 456 uasm_i_nop(&p); 457 } 458 } 459 460 /* 461 * This is the point of no return - this VPE will now proceed to 462 * disable coherence. At this point we *must* be sure that no other 463 * VPE within the core will interfere with the L1 dcache. 464 */ 465 uasm_build_label(&l, p, lbl_disable_coherence); 466 467 /* Invalidate the L1 icache */ 468 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache, 469 Index_Invalidate_I, lbl_invicache); 470 471 /* Writeback & invalidate the L1 dcache */ 472 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache, 473 Index_Writeback_Inv_D, lbl_flushdcache); 474 475 /* Barrier ensuring previous cache invalidates are complete */ 476 uasm_i_sync(&p, __SYNC_full); 477 uasm_i_ehb(&p); 478 479 if (mips_cm_revision() < CM_REV_CM3) { 480 /* 481 * Disable all but self interventions. The load from COHCTL is 482 * defined by the interAptiv & proAptiv SUMs as ensuring that the 483 * operation resulting from the preceding store is complete. 484 */ 485 uasm_i_addiu(&p, t0, zero, 1 << cpu_core(&cpu_data[cpu])); 486 uasm_i_sw(&p, t0, 0, r_pcohctl); 487 uasm_i_lw(&p, t0, 0, r_pcohctl); 488 489 /* Barrier to ensure write to coherence control is complete */ 490 uasm_i_sync(&p, __SYNC_full); 491 uasm_i_ehb(&p); 492 } 493 494 /* Disable coherence */ 495 uasm_i_sw(&p, zero, 0, r_pcohctl); 496 uasm_i_lw(&p, t0, 0, r_pcohctl); 497 498 if (state >= CPS_PM_CLOCK_GATED) { 499 err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu], 500 lbl_flush_fsb); 501 if (err) 502 goto out_err; 503 504 /* Determine the CPC command to issue */ 505 switch (state) { 506 case CPS_PM_CLOCK_GATED: 507 cpc_cmd = CPC_Cx_CMD_CLOCKOFF; 508 break; 509 case CPS_PM_POWER_GATED: 510 cpc_cmd = CPC_Cx_CMD_PWRDOWN; 511 break; 512 default: 513 BUG(); 514 goto out_err; 515 } 516 517 /* Issue the CPC command */ 518 UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd()); 519 uasm_i_addiu(&p, t1, zero, cpc_cmd); 520 uasm_i_sw(&p, t1, 0, t0); 521 522 if (state == CPS_PM_POWER_GATED) { 523 /* If anything goes wrong just hang */ 524 uasm_build_label(&l, p, lbl_hang); 525 uasm_il_b(&p, &r, lbl_hang); 526 uasm_i_nop(&p); 527 528 /* 529 * There's no point generating more code, the core is 530 * powered down & if powered back up will run from the 531 * reset vector not from here. 532 */ 533 goto gen_done; 534 } 535 536 /* Barrier to ensure write to CPC command is complete */ 537 uasm_i_sync(&p, __SYNC_full); 538 uasm_i_ehb(&p); 539 } 540 541 if (state == CPS_PM_NC_WAIT) { 542 /* 543 * At this point it is safe for all VPEs to proceed with 544 * execution. This VPE will set the top bit of ready_count 545 * to indicate to the other VPEs that they may continue. 546 */ 547 if (coupled_coherence) 548 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, 549 lbl_set_cont); 550 551 /* 552 * VPEs which did not disable coherence will continue 553 * executing, after coherence has been disabled, from this 554 * point. 555 */ 556 uasm_build_label(&l, p, lbl_secondary_cont); 557 558 /* Now perform our wait */ 559 uasm_i_wait(&p, 0); 560 } 561 562 /* 563 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs 564 * will run this. The first will actually re-enable coherence & the 565 * rest will just be performing a rather unusual nop. 566 */ 567 uasm_i_addiu(&p, t0, zero, mips_cm_revision() < CM_REV_CM3 568 ? CM_GCR_Cx_COHERENCE_COHDOMAINEN 569 : CM3_GCR_Cx_COHERENCE_COHEN); 570 571 uasm_i_sw(&p, t0, 0, r_pcohctl); 572 uasm_i_lw(&p, t0, 0, r_pcohctl); 573 574 /* Barrier to ensure write to coherence control is complete */ 575 uasm_i_sync(&p, __SYNC_full); 576 uasm_i_ehb(&p); 577 578 if (coupled_coherence && (state == CPS_PM_NC_WAIT)) { 579 /* Decrement ready_count */ 580 uasm_build_label(&l, p, lbl_decready); 581 uasm_i_sync(&p, __SYNC_mb); 582 uasm_i_ll(&p, t1, 0, r_nc_count); 583 uasm_i_addiu(&p, t2, t1, -1); 584 uasm_i_sc(&p, t2, 0, r_nc_count); 585 uasm_il_beqz(&p, &r, t2, lbl_decready); 586 uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1); 587 588 /* Barrier ensuring all CPUs see the updated r_nc_count value */ 589 uasm_i_sync(&p, __SYNC_mb); 590 } 591 592 if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) { 593 /* 594 * At this point it is safe for all VPEs to proceed with 595 * execution. This VPE will set the top bit of ready_count 596 * to indicate to the other VPEs that they may continue. 597 */ 598 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont); 599 600 /* 601 * This core will be reliant upon another core sending a 602 * power-up command to the CPC in order to resume operation. 603 * Thus an arbitrary VPE can't trigger the core leaving the 604 * idle state and the one that disables coherence might as well 605 * be the one to re-enable it. The rest will continue from here 606 * after that has been done. 607 */ 608 uasm_build_label(&l, p, lbl_secondary_cont); 609 610 /* Barrier ensuring all CPUs see the updated r_nc_count value */ 611 uasm_i_sync(&p, __SYNC_mb); 612 } 613 614 /* The core is coherent, time to return to C code */ 615 uasm_i_jr(&p, ra); 616 uasm_i_nop(&p); 617 618 gen_done: 619 /* Ensure the code didn't exceed the resources allocated for it */ 620 BUG_ON((p - buf) > max_instrs); 621 BUG_ON((l - labels) > ARRAY_SIZE(labels)); 622 BUG_ON((r - relocs) > ARRAY_SIZE(relocs)); 623 624 /* Patch branch offsets */ 625 uasm_resolve_relocs(relocs, labels); 626 627 /* Flush the icache */ 628 local_flush_icache_range((unsigned long)buf, (unsigned long)p); 629 630 return buf; 631 out_err: 632 kfree(buf); 633 return NULL; 634 } 635 636 static int cps_pm_online_cpu(unsigned int cpu) 637 { 638 enum cps_pm_state state; 639 unsigned core = cpu_core(&cpu_data[cpu]); 640 void *entry_fn, *core_rc; 641 642 for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) { 643 if (per_cpu(nc_asm_enter, core)[state]) 644 continue; 645 if (!test_bit(state, state_support)) 646 continue; 647 648 entry_fn = cps_gen_entry_code(cpu, state); 649 if (!entry_fn) { 650 pr_err("Failed to generate core %u state %u entry\n", 651 core, state); 652 clear_bit(state, state_support); 653 } 654 655 per_cpu(nc_asm_enter, core)[state] = entry_fn; 656 } 657 658 if (!per_cpu(ready_count, core)) { 659 core_rc = kmalloc(sizeof(u32), GFP_KERNEL); 660 if (!core_rc) { 661 pr_err("Failed allocate core %u ready_count\n", core); 662 return -ENOMEM; 663 } 664 per_cpu(ready_count, core) = core_rc; 665 } 666 667 return 0; 668 } 669 670 static int cps_pm_power_notifier(struct notifier_block *this, 671 unsigned long event, void *ptr) 672 { 673 unsigned int stat; 674 675 switch (event) { 676 case PM_SUSPEND_PREPARE: 677 stat = read_cpc_cl_stat_conf(); 678 /* 679 * If we're attempting to suspend the system and power down all 680 * of the cores, the JTAG detect bit indicates that the CPC will 681 * instead put the cores into clock-off state. In this state 682 * a connected debugger can cause the CPU to attempt 683 * interactions with the powered down system. At best this will 684 * fail. At worst, it can hang the NoC, requiring a hard reset. 685 * To avoid this, just block system suspend if a JTAG probe 686 * is detected. 687 */ 688 if (stat & CPC_Cx_STAT_CONF_EJTAG_PROBE) { 689 pr_warn("JTAG probe is connected - abort suspend\n"); 690 return NOTIFY_BAD; 691 } 692 return NOTIFY_DONE; 693 default: 694 return NOTIFY_DONE; 695 } 696 } 697 698 static int __init cps_pm_init(void) 699 { 700 /* A CM is required for all non-coherent states */ 701 if (!mips_cm_present()) { 702 pr_warn("pm-cps: no CM, non-coherent states unavailable\n"); 703 return 0; 704 } 705 706 /* 707 * If interrupts were enabled whilst running a wait instruction on a 708 * non-coherent core then the VPE may end up processing interrupts 709 * whilst non-coherent. That would be bad. 710 */ 711 if (cpu_wait == r4k_wait_irqoff) 712 set_bit(CPS_PM_NC_WAIT, state_support); 713 else 714 pr_warn("pm-cps: non-coherent wait unavailable\n"); 715 716 /* Detect whether a CPC is present */ 717 if (mips_cpc_present()) { 718 /* Detect whether clock gating is implemented */ 719 if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL) 720 set_bit(CPS_PM_CLOCK_GATED, state_support); 721 else 722 pr_warn("pm-cps: CPC does not support clock gating\n"); 723 724 /* Power gating is available with CPS SMP & any CPC */ 725 if (mips_cps_smp_in_use()) 726 set_bit(CPS_PM_POWER_GATED, state_support); 727 else 728 pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n"); 729 } else { 730 pr_warn("pm-cps: no CPC, clock & power gating unavailable\n"); 731 } 732 733 pm_notifier(cps_pm_power_notifier, 0); 734 735 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mips/cps_pm:online", 736 cps_pm_online_cpu, NULL); 737 } 738 arch_initcall(cps_pm_init); 739