1 /* 2 * Copyright (C) 2014 Imagination Technologies 3 * Author: Paul Burton <paul.burton@imgtec.com> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License as published by the 7 * Free Software Foundation; either version 2 of the License, or (at your 8 * option) any later version. 9 */ 10 11 #include <linux/init.h> 12 #include <linux/percpu.h> 13 #include <linux/slab.h> 14 15 #include <asm/asm-offsets.h> 16 #include <asm/cacheflush.h> 17 #include <asm/cacheops.h> 18 #include <asm/idle.h> 19 #include <asm/mips-cm.h> 20 #include <asm/mips-cpc.h> 21 #include <asm/mipsmtregs.h> 22 #include <asm/pm.h> 23 #include <asm/pm-cps.h> 24 #include <asm/smp-cps.h> 25 #include <asm/uasm.h> 26 27 /* 28 * cps_nc_entry_fn - type of a generated non-coherent state entry function 29 * @online: the count of online coupled VPEs 30 * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count 31 * 32 * The code entering & exiting non-coherent states is generated at runtime 33 * using uasm, in order to ensure that the compiler cannot insert a stray 34 * memory access at an unfortunate time and to allow the generation of optimal 35 * core-specific code particularly for cache routines. If coupled_coherence 36 * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state, 37 * returns the number of VPEs that were in the wait state at the point this 38 * VPE left it. Returns garbage if coupled_coherence is zero or this is not 39 * the entry function for CPS_PM_NC_WAIT. 40 */ 41 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count); 42 43 /* 44 * The entry point of the generated non-coherent idle state entry/exit 45 * functions. Actually per-core rather than per-CPU. 46 */ 47 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT], 48 nc_asm_enter); 49 50 /* Bitmap indicating which states are supported by the system */ 51 DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT); 52 53 /* 54 * Indicates the number of coupled VPEs ready to operate in a non-coherent 55 * state. Actually per-core rather than per-CPU. 56 */ 57 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count); 58 static DEFINE_PER_CPU_ALIGNED(void*, ready_count_alloc); 59 60 /* Indicates online CPUs coupled with the current CPU */ 61 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled); 62 63 /* 64 * Used to synchronize entry to deep idle states. Actually per-core rather 65 * than per-CPU. 66 */ 67 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier); 68 69 /* Saved CPU state across the CPS_PM_POWER_GATED state */ 70 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state); 71 72 /* A somewhat arbitrary number of labels & relocs for uasm */ 73 static struct uasm_label labels[32] __initdata; 74 static struct uasm_reloc relocs[32] __initdata; 75 76 /* CPU dependant sync types */ 77 static unsigned stype_intervention; 78 static unsigned stype_memory; 79 static unsigned stype_ordering; 80 81 enum mips_reg { 82 zero, at, v0, v1, a0, a1, a2, a3, 83 t0, t1, t2, t3, t4, t5, t6, t7, 84 s0, s1, s2, s3, s4, s5, s6, s7, 85 t8, t9, k0, k1, gp, sp, fp, ra, 86 }; 87 88 bool cps_pm_support_state(enum cps_pm_state state) 89 { 90 return test_bit(state, state_support); 91 } 92 93 static void coupled_barrier(atomic_t *a, unsigned online) 94 { 95 /* 96 * This function is effectively the same as 97 * cpuidle_coupled_parallel_barrier, which can't be used here since 98 * there's no cpuidle device. 99 */ 100 101 if (!coupled_coherence) 102 return; 103 104 smp_mb__before_atomic(); 105 atomic_inc(a); 106 107 while (atomic_read(a) < online) 108 cpu_relax(); 109 110 if (atomic_inc_return(a) == online * 2) { 111 atomic_set(a, 0); 112 return; 113 } 114 115 while (atomic_read(a) > online) 116 cpu_relax(); 117 } 118 119 int cps_pm_enter_state(enum cps_pm_state state) 120 { 121 unsigned cpu = smp_processor_id(); 122 unsigned core = current_cpu_data.core; 123 unsigned online, left; 124 cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled); 125 u32 *core_ready_count, *nc_core_ready_count; 126 void *nc_addr; 127 cps_nc_entry_fn entry; 128 struct core_boot_config *core_cfg; 129 struct vpe_boot_config *vpe_cfg; 130 131 /* Check that there is an entry function for this state */ 132 entry = per_cpu(nc_asm_enter, core)[state]; 133 if (!entry) 134 return -EINVAL; 135 136 /* Calculate which coupled CPUs (VPEs) are online */ 137 #ifdef CONFIG_MIPS_MT 138 if (cpu_online(cpu)) { 139 cpumask_and(coupled_mask, cpu_online_mask, 140 &cpu_sibling_map[cpu]); 141 online = cpumask_weight(coupled_mask); 142 cpumask_clear_cpu(cpu, coupled_mask); 143 } else 144 #endif 145 { 146 cpumask_clear(coupled_mask); 147 online = 1; 148 } 149 150 /* Setup the VPE to run mips_cps_pm_restore when started again */ 151 if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) { 152 /* Power gating relies upon CPS SMP */ 153 if (!mips_cps_smp_in_use()) 154 return -EINVAL; 155 156 core_cfg = &mips_cps_core_bootcfg[core]; 157 vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(¤t_cpu_data)]; 158 vpe_cfg->pc = (unsigned long)mips_cps_pm_restore; 159 vpe_cfg->gp = (unsigned long)current_thread_info(); 160 vpe_cfg->sp = 0; 161 } 162 163 /* Indicate that this CPU might not be coherent */ 164 cpumask_clear_cpu(cpu, &cpu_coherent_mask); 165 smp_mb__after_atomic(); 166 167 /* Create a non-coherent mapping of the core ready_count */ 168 core_ready_count = per_cpu(ready_count, core); 169 nc_addr = kmap_noncoherent(virt_to_page(core_ready_count), 170 (unsigned long)core_ready_count); 171 nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK); 172 nc_core_ready_count = nc_addr; 173 174 /* Ensure ready_count is zero-initialised before the assembly runs */ 175 ACCESS_ONCE(*nc_core_ready_count) = 0; 176 coupled_barrier(&per_cpu(pm_barrier, core), online); 177 178 /* Run the generated entry code */ 179 left = entry(online, nc_core_ready_count); 180 181 /* Remove the non-coherent mapping of ready_count */ 182 kunmap_noncoherent(); 183 184 /* Indicate that this CPU is definitely coherent */ 185 cpumask_set_cpu(cpu, &cpu_coherent_mask); 186 187 /* 188 * If this VPE is the first to leave the non-coherent wait state then 189 * it needs to wake up any coupled VPEs still running their wait 190 * instruction so that they return to cpuidle, which can then complete 191 * coordination between the coupled VPEs & provide the governor with 192 * a chance to reflect on the length of time the VPEs were in the 193 * idle state. 194 */ 195 if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online)) 196 arch_send_call_function_ipi_mask(coupled_mask); 197 198 return 0; 199 } 200 201 static void __init cps_gen_cache_routine(u32 **pp, struct uasm_label **pl, 202 struct uasm_reloc **pr, 203 const struct cache_desc *cache, 204 unsigned op, int lbl) 205 { 206 unsigned cache_size = cache->ways << cache->waybit; 207 unsigned i; 208 const unsigned unroll_lines = 32; 209 210 /* If the cache isn't present this function has it easy */ 211 if (cache->flags & MIPS_CACHE_NOT_PRESENT) 212 return; 213 214 /* Load base address */ 215 UASM_i_LA(pp, t0, (long)CKSEG0); 216 217 /* Calculate end address */ 218 if (cache_size < 0x8000) 219 uasm_i_addiu(pp, t1, t0, cache_size); 220 else 221 UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size)); 222 223 /* Start of cache op loop */ 224 uasm_build_label(pl, *pp, lbl); 225 226 /* Generate the cache ops */ 227 for (i = 0; i < unroll_lines; i++) { 228 if (cpu_has_mips_r6) { 229 uasm_i_cache(pp, op, 0, t0); 230 uasm_i_addiu(pp, t0, t0, cache->linesz); 231 } else { 232 uasm_i_cache(pp, op, i * cache->linesz, t0); 233 } 234 } 235 236 if (!cpu_has_mips_r6) 237 /* Update the base address */ 238 uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz); 239 240 /* Loop if we haven't reached the end address yet */ 241 uasm_il_bne(pp, pr, t0, t1, lbl); 242 uasm_i_nop(pp); 243 } 244 245 static int __init cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl, 246 struct uasm_reloc **pr, 247 const struct cpuinfo_mips *cpu_info, 248 int lbl) 249 { 250 unsigned i, fsb_size = 8; 251 unsigned num_loads = (fsb_size * 3) / 2; 252 unsigned line_stride = 2; 253 unsigned line_size = cpu_info->dcache.linesz; 254 unsigned perf_counter, perf_event; 255 unsigned revision = cpu_info->processor_id & PRID_REV_MASK; 256 257 /* 258 * Determine whether this CPU requires an FSB flush, and if so which 259 * performance counter/event reflect stalls due to a full FSB. 260 */ 261 switch (__get_cpu_type(cpu_info->cputype)) { 262 case CPU_INTERAPTIV: 263 perf_counter = 1; 264 perf_event = 51; 265 break; 266 267 case CPU_PROAPTIV: 268 /* Newer proAptiv cores don't require this workaround */ 269 if (revision >= PRID_REV_ENCODE_332(1, 1, 0)) 270 return 0; 271 272 /* On older ones it's unavailable */ 273 return -1; 274 275 /* CPUs which do not require the workaround */ 276 case CPU_P5600: 277 case CPU_I6400: 278 return 0; 279 280 default: 281 WARN_ONCE(1, "pm-cps: FSB flush unsupported for this CPU\n"); 282 return -1; 283 } 284 285 /* 286 * Ensure that the fill/store buffer (FSB) is not holding the results 287 * of a prefetch, since if it is then the CPC sequencer may become 288 * stuck in the D3 (ClrBus) state whilst entering a low power state. 289 */ 290 291 /* Preserve perf counter setup */ 292 uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 293 uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */ 294 295 /* Setup perf counter to count FSB full pipeline stalls */ 296 uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf); 297 uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 298 uasm_i_ehb(pp); 299 uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */ 300 uasm_i_ehb(pp); 301 302 /* Base address for loads */ 303 UASM_i_LA(pp, t0, (long)CKSEG0); 304 305 /* Start of clear loop */ 306 uasm_build_label(pl, *pp, lbl); 307 308 /* Perform some loads to fill the FSB */ 309 for (i = 0; i < num_loads; i++) 310 uasm_i_lw(pp, zero, i * line_size * line_stride, t0); 311 312 /* 313 * Invalidate the new D-cache entries so that the cache will need 314 * refilling (via the FSB) if the loop is executed again. 315 */ 316 for (i = 0; i < num_loads; i++) { 317 uasm_i_cache(pp, Hit_Invalidate_D, 318 i * line_size * line_stride, t0); 319 uasm_i_cache(pp, Hit_Writeback_Inv_SD, 320 i * line_size * line_stride, t0); 321 } 322 323 /* Completion barrier */ 324 uasm_i_sync(pp, stype_memory); 325 uasm_i_ehb(pp); 326 327 /* Check whether the pipeline stalled due to the FSB being full */ 328 uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */ 329 330 /* Loop if it didn't */ 331 uasm_il_beqz(pp, pr, t1, lbl); 332 uasm_i_nop(pp); 333 334 /* Restore perf counter 1. The count may well now be wrong... */ 335 uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 336 uasm_i_ehb(pp); 337 uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */ 338 uasm_i_ehb(pp); 339 340 return 0; 341 } 342 343 static void __init cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl, 344 struct uasm_reloc **pr, 345 unsigned r_addr, int lbl) 346 { 347 uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000)); 348 uasm_build_label(pl, *pp, lbl); 349 uasm_i_ll(pp, t1, 0, r_addr); 350 uasm_i_or(pp, t1, t1, t0); 351 uasm_i_sc(pp, t1, 0, r_addr); 352 uasm_il_beqz(pp, pr, t1, lbl); 353 uasm_i_nop(pp); 354 } 355 356 static void * __init cps_gen_entry_code(unsigned cpu, enum cps_pm_state state) 357 { 358 struct uasm_label *l = labels; 359 struct uasm_reloc *r = relocs; 360 u32 *buf, *p; 361 const unsigned r_online = a0; 362 const unsigned r_nc_count = a1; 363 const unsigned r_pcohctl = t7; 364 const unsigned max_instrs = 256; 365 unsigned cpc_cmd; 366 int err; 367 enum { 368 lbl_incready = 1, 369 lbl_poll_cont, 370 lbl_secondary_hang, 371 lbl_disable_coherence, 372 lbl_flush_fsb, 373 lbl_invicache, 374 lbl_flushdcache, 375 lbl_hang, 376 lbl_set_cont, 377 lbl_secondary_cont, 378 lbl_decready, 379 }; 380 381 /* Allocate a buffer to hold the generated code */ 382 p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL); 383 if (!buf) 384 return NULL; 385 386 /* Clear labels & relocs ready for (re)use */ 387 memset(labels, 0, sizeof(labels)); 388 memset(relocs, 0, sizeof(relocs)); 389 390 if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) { 391 /* Power gating relies upon CPS SMP */ 392 if (!mips_cps_smp_in_use()) 393 goto out_err; 394 395 /* 396 * Save CPU state. Note the non-standard calling convention 397 * with the return address placed in v0 to avoid clobbering 398 * the ra register before it is saved. 399 */ 400 UASM_i_LA(&p, t0, (long)mips_cps_pm_save); 401 uasm_i_jalr(&p, v0, t0); 402 uasm_i_nop(&p); 403 } 404 405 /* 406 * Load addresses of required CM & CPC registers. This is done early 407 * because they're needed in both the enable & disable coherence steps 408 * but in the coupled case the enable step will only run on one VPE. 409 */ 410 UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence()); 411 412 if (coupled_coherence) { 413 /* Increment ready_count */ 414 uasm_i_sync(&p, stype_ordering); 415 uasm_build_label(&l, p, lbl_incready); 416 uasm_i_ll(&p, t1, 0, r_nc_count); 417 uasm_i_addiu(&p, t2, t1, 1); 418 uasm_i_sc(&p, t2, 0, r_nc_count); 419 uasm_il_beqz(&p, &r, t2, lbl_incready); 420 uasm_i_addiu(&p, t1, t1, 1); 421 422 /* Ordering barrier */ 423 uasm_i_sync(&p, stype_ordering); 424 425 /* 426 * If this is the last VPE to become ready for non-coherence 427 * then it should branch below. 428 */ 429 uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence); 430 uasm_i_nop(&p); 431 432 if (state < CPS_PM_POWER_GATED) { 433 /* 434 * Otherwise this is not the last VPE to become ready 435 * for non-coherence. It needs to wait until coherence 436 * has been disabled before proceeding, which it will do 437 * by polling for the top bit of ready_count being set. 438 */ 439 uasm_i_addiu(&p, t1, zero, -1); 440 uasm_build_label(&l, p, lbl_poll_cont); 441 uasm_i_lw(&p, t0, 0, r_nc_count); 442 uasm_il_bltz(&p, &r, t0, lbl_secondary_cont); 443 uasm_i_ehb(&p); 444 uasm_i_yield(&p, zero, t1); 445 uasm_il_b(&p, &r, lbl_poll_cont); 446 uasm_i_nop(&p); 447 } else { 448 /* 449 * The core will lose power & this VPE will not continue 450 * so it can simply halt here. 451 */ 452 uasm_i_addiu(&p, t0, zero, TCHALT_H); 453 uasm_i_mtc0(&p, t0, 2, 4); 454 uasm_build_label(&l, p, lbl_secondary_hang); 455 uasm_il_b(&p, &r, lbl_secondary_hang); 456 uasm_i_nop(&p); 457 } 458 } 459 460 /* 461 * This is the point of no return - this VPE will now proceed to 462 * disable coherence. At this point we *must* be sure that no other 463 * VPE within the core will interfere with the L1 dcache. 464 */ 465 uasm_build_label(&l, p, lbl_disable_coherence); 466 467 /* Invalidate the L1 icache */ 468 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache, 469 Index_Invalidate_I, lbl_invicache); 470 471 /* Writeback & invalidate the L1 dcache */ 472 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache, 473 Index_Writeback_Inv_D, lbl_flushdcache); 474 475 /* Completion barrier */ 476 uasm_i_sync(&p, stype_memory); 477 uasm_i_ehb(&p); 478 479 /* 480 * Disable all but self interventions. The load from COHCTL is defined 481 * by the interAptiv & proAptiv SUMs as ensuring that the operation 482 * resulting from the preceding store is complete. 483 */ 484 uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core); 485 uasm_i_sw(&p, t0, 0, r_pcohctl); 486 uasm_i_lw(&p, t0, 0, r_pcohctl); 487 488 /* Sync to ensure previous interventions are complete */ 489 uasm_i_sync(&p, stype_intervention); 490 uasm_i_ehb(&p); 491 492 /* Disable coherence */ 493 uasm_i_sw(&p, zero, 0, r_pcohctl); 494 uasm_i_lw(&p, t0, 0, r_pcohctl); 495 496 if (state >= CPS_PM_CLOCK_GATED) { 497 err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu], 498 lbl_flush_fsb); 499 if (err) 500 goto out_err; 501 502 /* Determine the CPC command to issue */ 503 switch (state) { 504 case CPS_PM_CLOCK_GATED: 505 cpc_cmd = CPC_Cx_CMD_CLOCKOFF; 506 break; 507 case CPS_PM_POWER_GATED: 508 cpc_cmd = CPC_Cx_CMD_PWRDOWN; 509 break; 510 default: 511 BUG(); 512 goto out_err; 513 } 514 515 /* Issue the CPC command */ 516 UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd()); 517 uasm_i_addiu(&p, t1, zero, cpc_cmd); 518 uasm_i_sw(&p, t1, 0, t0); 519 520 if (state == CPS_PM_POWER_GATED) { 521 /* If anything goes wrong just hang */ 522 uasm_build_label(&l, p, lbl_hang); 523 uasm_il_b(&p, &r, lbl_hang); 524 uasm_i_nop(&p); 525 526 /* 527 * There's no point generating more code, the core is 528 * powered down & if powered back up will run from the 529 * reset vector not from here. 530 */ 531 goto gen_done; 532 } 533 534 /* Completion barrier */ 535 uasm_i_sync(&p, stype_memory); 536 uasm_i_ehb(&p); 537 } 538 539 if (state == CPS_PM_NC_WAIT) { 540 /* 541 * At this point it is safe for all VPEs to proceed with 542 * execution. This VPE will set the top bit of ready_count 543 * to indicate to the other VPEs that they may continue. 544 */ 545 if (coupled_coherence) 546 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, 547 lbl_set_cont); 548 549 /* 550 * VPEs which did not disable coherence will continue 551 * executing, after coherence has been disabled, from this 552 * point. 553 */ 554 uasm_build_label(&l, p, lbl_secondary_cont); 555 556 /* Now perform our wait */ 557 uasm_i_wait(&p, 0); 558 } 559 560 /* 561 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs 562 * will run this. The first will actually re-enable coherence & the 563 * rest will just be performing a rather unusual nop. 564 */ 565 uasm_i_addiu(&p, t0, zero, CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK); 566 uasm_i_sw(&p, t0, 0, r_pcohctl); 567 uasm_i_lw(&p, t0, 0, r_pcohctl); 568 569 /* Completion barrier */ 570 uasm_i_sync(&p, stype_memory); 571 uasm_i_ehb(&p); 572 573 if (coupled_coherence && (state == CPS_PM_NC_WAIT)) { 574 /* Decrement ready_count */ 575 uasm_build_label(&l, p, lbl_decready); 576 uasm_i_sync(&p, stype_ordering); 577 uasm_i_ll(&p, t1, 0, r_nc_count); 578 uasm_i_addiu(&p, t2, t1, -1); 579 uasm_i_sc(&p, t2, 0, r_nc_count); 580 uasm_il_beqz(&p, &r, t2, lbl_decready); 581 uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1); 582 583 /* Ordering barrier */ 584 uasm_i_sync(&p, stype_ordering); 585 } 586 587 if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) { 588 /* 589 * At this point it is safe for all VPEs to proceed with 590 * execution. This VPE will set the top bit of ready_count 591 * to indicate to the other VPEs that they may continue. 592 */ 593 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont); 594 595 /* 596 * This core will be reliant upon another core sending a 597 * power-up command to the CPC in order to resume operation. 598 * Thus an arbitrary VPE can't trigger the core leaving the 599 * idle state and the one that disables coherence might as well 600 * be the one to re-enable it. The rest will continue from here 601 * after that has been done. 602 */ 603 uasm_build_label(&l, p, lbl_secondary_cont); 604 605 /* Ordering barrier */ 606 uasm_i_sync(&p, stype_ordering); 607 } 608 609 /* The core is coherent, time to return to C code */ 610 uasm_i_jr(&p, ra); 611 uasm_i_nop(&p); 612 613 gen_done: 614 /* Ensure the code didn't exceed the resources allocated for it */ 615 BUG_ON((p - buf) > max_instrs); 616 BUG_ON((l - labels) > ARRAY_SIZE(labels)); 617 BUG_ON((r - relocs) > ARRAY_SIZE(relocs)); 618 619 /* Patch branch offsets */ 620 uasm_resolve_relocs(relocs, labels); 621 622 /* Flush the icache */ 623 local_flush_icache_range((unsigned long)buf, (unsigned long)p); 624 625 return buf; 626 out_err: 627 kfree(buf); 628 return NULL; 629 } 630 631 static int __init cps_gen_core_entries(unsigned cpu) 632 { 633 enum cps_pm_state state; 634 unsigned core = cpu_data[cpu].core; 635 unsigned dlinesz = cpu_data[cpu].dcache.linesz; 636 void *entry_fn, *core_rc; 637 638 for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) { 639 if (per_cpu(nc_asm_enter, core)[state]) 640 continue; 641 if (!test_bit(state, state_support)) 642 continue; 643 644 entry_fn = cps_gen_entry_code(cpu, state); 645 if (!entry_fn) { 646 pr_err("Failed to generate core %u state %u entry\n", 647 core, state); 648 clear_bit(state, state_support); 649 } 650 651 per_cpu(nc_asm_enter, core)[state] = entry_fn; 652 } 653 654 if (!per_cpu(ready_count, core)) { 655 core_rc = kmalloc(dlinesz * 2, GFP_KERNEL); 656 if (!core_rc) { 657 pr_err("Failed allocate core %u ready_count\n", core); 658 return -ENOMEM; 659 } 660 per_cpu(ready_count_alloc, core) = core_rc; 661 662 /* Ensure ready_count is aligned to a cacheline boundary */ 663 core_rc += dlinesz - 1; 664 core_rc = (void *)((unsigned long)core_rc & ~(dlinesz - 1)); 665 per_cpu(ready_count, core) = core_rc; 666 } 667 668 return 0; 669 } 670 671 static int __init cps_pm_init(void) 672 { 673 unsigned cpu; 674 int err; 675 676 /* Detect appropriate sync types for the system */ 677 switch (current_cpu_data.cputype) { 678 case CPU_INTERAPTIV: 679 case CPU_PROAPTIV: 680 case CPU_M5150: 681 case CPU_P5600: 682 case CPU_I6400: 683 stype_intervention = 0x2; 684 stype_memory = 0x3; 685 stype_ordering = 0x10; 686 break; 687 688 default: 689 pr_warn("Power management is using heavyweight sync 0\n"); 690 } 691 692 /* A CM is required for all non-coherent states */ 693 if (!mips_cm_present()) { 694 pr_warn("pm-cps: no CM, non-coherent states unavailable\n"); 695 goto out; 696 } 697 698 /* 699 * If interrupts were enabled whilst running a wait instruction on a 700 * non-coherent core then the VPE may end up processing interrupts 701 * whilst non-coherent. That would be bad. 702 */ 703 if (cpu_wait == r4k_wait_irqoff) 704 set_bit(CPS_PM_NC_WAIT, state_support); 705 else 706 pr_warn("pm-cps: non-coherent wait unavailable\n"); 707 708 /* Detect whether a CPC is present */ 709 if (mips_cpc_present()) { 710 /* Detect whether clock gating is implemented */ 711 if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK) 712 set_bit(CPS_PM_CLOCK_GATED, state_support); 713 else 714 pr_warn("pm-cps: CPC does not support clock gating\n"); 715 716 /* Power gating is available with CPS SMP & any CPC */ 717 if (mips_cps_smp_in_use()) 718 set_bit(CPS_PM_POWER_GATED, state_support); 719 else 720 pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n"); 721 } else { 722 pr_warn("pm-cps: no CPC, clock & power gating unavailable\n"); 723 } 724 725 for_each_present_cpu(cpu) { 726 err = cps_gen_core_entries(cpu); 727 if (err) 728 return err; 729 } 730 out: 731 return 0; 732 } 733 arch_initcall(cps_pm_init); 734